Mode-selective read-in integrated circuit with improved input range for infrared scene projectors

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 169
  • Download : 0
As infrared (IR) imaging systems are being used more often in military fields, the importance of IR sensor evaluation system has emerged. Owing to their non-destructiveness and cost effectiveness, hardware-in-the-loop (HWIL) systems with IR scene projectors (IRSPs) are now being widely used. IRSPs generate virtual IR scenes to evaluate IR imaging systems, which has two performance parameters: thermal range and thermal resolution. Specifically, IR scene quality is determined by the thermal resolution performance and the input digital depth increment can provide a suitable solution to improve resolution. However, the input digital depth increment is limited by system noise and setting a sufficient thermal resolution with wide thermal range is difficult. In this paper, a mode-selective read-in integrated circuit (RIIC) with native transistor is proposed. The native transistor having almost zero threshold voltage, increases the input range, which helps to improve noise margin. A prototype of the RIIC was fabricated using a 0.18-μm 1-poly 6-metal CMOS process and its performance was estimated from measured data. Thermal resolution below 325 K was less than 30 mK and was 185 mK above 325 K in high-current mode; with 14-bit digital resolution, the thermal range varied from 270-325 K to 270-990 K.
Publisher
SPIE
Issue Date
2019-04-14
Language
English
Citation

SPIE Defense Commercial Sensing

DOI
10.1117/12.2518578
URI
http://hdl.handle.net/10203/263471
Appears in Collection
EE-Conference Papers(학술회의논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0