System Design and Resource Analysis for Persistent Robotic Presence with Multiple Refueling Stations

Cited 4 time in webofscience Cited 5 time in scopus
  • Hit : 401
  • Download : 0
Despite the capabilities of unmanned aerial vehicles (UAVs), it is not possible to conduct long-term missions with a just few UAVs due to fuel restrictions. This requires a system that includes multiple UAVs and automated recharging stations for an automatic and persistent service. In order to construct a persistent presence system such as local surveillance and monitoring, it is important to determine the design of the mission and the number of resources required. In this paper, a system consisting of multiple target areas and multiple stations is considered. There arc two types of stations: refueling and main stations for maintenance. UAVs can travel further using the refueling stations. A decision-free Petri net model for persistency is developed for cyclic paths including multiple immobile targets and stations. From the Petri net model, we derive a closed-form function for the minimum number of resources in the persistent system. A mathematical model that has the objective function derived from the Petri net is developed. To resolve the computational issue, a genetic algorithm (GA) is used to solve the problem. As the result, the minimum number of resources required and the mission path are derived.
Publisher
International Conference on Unmanned Aircraft Systems
Issue Date
2019-06-13
Language
English
Citation

2019 International Conference on Unmanned Aircraft Systems(ICUAS), pp.622 - 629

DOI
10.1109/ICUAS.2019.8797808
URI
http://hdl.handle.net/10203/263406
Appears in Collection
IE-Conference Papers(학술회의논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 4 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0