Effect of Li concentration-dependent material properties on diffusion induced stresses of a Sn anode

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 78
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorHong, Chung Suko
dc.contributor.authorQaiser, Nadeemko
dc.contributor.authorNam, Hyeon Gyunko
dc.contributor.authorHan, Seung Minko
dc.date.accessioned2019-07-18T05:30:10Z-
dc.date.available2019-07-18T05:30:10Z-
dc.date.created2019-07-15-
dc.date.issuedACCEPT-
dc.identifier.citationPHYSICAL CHEMISTRY CHEMICAL PHYSICS, v.21, no.18, pp.9581 - 9589-
dc.identifier.issn1463-9076-
dc.identifier.urihttp://hdl.handle.net/10203/263274-
dc.description.abstractSn is one of the promising Li ion battery anode materials with high theoretical capacity and mechanical properties that allow for effective relaxation of Li diffusion-induced stresses. Sn is a low melting point metal with a low modulus and strength and has the ability to relax stresses via plasticity and creep deformations. In this study, concentration-dependent material properties are used in numerical simulations to model the Li diffusion-induced stress evolution in Sn micropillars. Simulation results using concentration-dependent material properties resulted in a completely different failure mode in comparison to that of concentration-independent simulation results. Tensile hoop stress needed for crack propagation was analyzed to be at the core for concentration-independent material properties, and switched to being at the surface for concentration-dependent simulation results. In addition, by incorporating these maximum tensile DIS results, the critical size for the failure of Sn micropillars was determined to be 5.3 mm at C/10 charging rate. This was then correlated with experimental observations, where fracture occurred in Sn micropillars with sizes larger than 6 mm, while 4.4 mm sized Sn micropillars survived the lithiation cycle.-
dc.languageEnglish-
dc.publisherROYAL SOC CHEMISTRY-
dc.titleEffect of Li concentration-dependent material properties on diffusion induced stresses of a Sn anode-
dc.typeArticle-
dc.identifier.wosid000472922500062-
dc.identifier.scopusid2-s2.0-85065621196-
dc.type.rimsART-
dc.citation.volume21-
dc.citation.issue18-
dc.citation.beginningpage9581-
dc.citation.endingpage9589-
dc.citation.publicationnamePHYSICAL CHEMISTRY CHEMICAL PHYSICS-
dc.identifier.doi10.1039/c9cp00559e-
dc.contributor.localauthorHan, Seung Min-
dc.contributor.nonIdAuthorNam, Hyeon Gyun-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusNEGATIVE ELECTRODE-
dc.subject.keywordPlusION BATTERIES-
dc.subject.keywordPlusLITHIUM-
dc.subject.keywordPlusTIN-
dc.subject.keywordPlusSILICON-
dc.subject.keywordPlusDEFORMATION-
dc.subject.keywordPlusFRACTURE-
dc.subject.keywordPlusPHASES-
dc.subject.keywordPlusLITHIATION-
dc.subject.keywordPlusPARTICLES-
Appears in Collection
EEW-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0