Designing model-based and model-free reinforcement learning tasks without human guidance

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 64
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorShin, Jae Hoonko
dc.contributor.authorLee, Jee Hangko
dc.contributor.authorTong, Shuangyiko
dc.contributor.authorKim, Sang Hwanko
dc.contributor.authorLee, Sang Wanko
dc.date.accessioned2019-07-08T01:50:03Z-
dc.date.available2019-07-08T01:50:03Z-
dc.date.created2019-07-04-
dc.date.created2019-07-04-
dc.date.issued2019-07-08-
dc.identifier.citation4th Multidisciplinary Conference on Reinforcement Learning and Decision Making-
dc.identifier.urihttp://hdl.handle.net/10203/263043-
dc.languageEnglish-
dc.publisherRLDM 2019-
dc.titleDesigning model-based and model-free reinforcement learning tasks without human guidance-
dc.typeConference-
dc.type.rimsCONF-
dc.citation.publicationname4th Multidisciplinary Conference on Reinforcement Learning and Decision Making-
dc.identifier.conferencecountryCN-
dc.identifier.conferencelocationMcGill University, Montréal-
dc.contributor.localauthorLee, Sang Wan-
dc.contributor.nonIdAuthorShin, Jae Hoon-
dc.contributor.nonIdAuthorLee, Jee Hang-
dc.contributor.nonIdAuthorTong, Shuangyi-
dc.contributor.nonIdAuthorKim, Sang Hwan-
Appears in Collection
BiS-Conference Papers(학술회의논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0