Simulation-based Distributed Coordination Maximization over Networks

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 32
  • Download : 0
In various multi-agent networked environments, the system can benefit from coordinating actions of two interacting agents at some cost of coordination. In this paper, we first formulate an optimization problem that captures the amount of coordination gain at the cost of node activation over given network structure. In this paper, we propose three simulation-based distributed algorithms, each having different update rules, all of which require only one-hop message passing and locally-observed information. The key idea for being distributedness is due to a stochastic approximation method that runs a Markov chain simulation incompletely over time, but provably guarantees its convergence to the optimal solution. Next, we provide new interpretations of our proposed algorithms from a game-theoretic perspective. We artificially select the payoff function, where the game's Nash equilibrium is asymptotically equal to the socially optimal point. We show that two stochastically-approximated variants of standard game-learning dynamics overlap with two algorithms developed from the optimization perspective, and finally demonstrate our theoretical findings through extensive simulations.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2019-06
Language
English
Article Type
Article
Citation

IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, v.6, no.2, pp.713 - 726

ISSN
2325-5870
DOI
10.1109/TCNS.2018.2873162
URI
http://hdl.handle.net/10203/262797
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0