Nanoislands as plasmonic materials

Cited 39 time in webofscience Cited 23 time in scopus
  • Hit : 550
  • Download : 0
Subwavelength metal nanoislands thermally dewetted from a thin film emerge as a powerful and cost-effective photonic material, due to the formation of substantially strong nano-gap-based plasmonic hot spots and their simple large-area nanofabrication. Unlike conventional nanostructures, nanoislands dewetted from thin metal films can be formed on a large scale at the wafer level and show substrate-dependent plasmonic phenomena across a broad spectral range from ultraviolet to infrared. Substrate-selective dewetting methods for metal nanoislands enable diverse nanophotonic and optoelectronic technologies, underlining mechanical, structural, and material properties of a substrate. Emerging bioplasmonic technology using metal nanoislands also serves as a high-throughput and surface-sensitive analytical technique with wide-ranging application in rapid, real-time, and point-of-care medical diagnostics. This review introduces an assortment of dewetting fabrication methods for metal nanoislands on distinct substrates from glass to cellulose fibers and provides novel findings for metal nanoislands on a substrate by three-dimensional numerical modeling. Furthermore, the plasmonic properties of metal nanoislands and recent examples for their photonic applications, in particular, biological sensing, are technically summarized and discussed.
Publisher
ROYAL SOC CHEMISTRY
Issue Date
2019-05
Language
English
Article Type
Review
Citation

NANOSCALE, v.11, no.18, pp.8651 - 8664

ISSN
2040-3364
DOI
10.1039/c8nr10539a
URI
http://hdl.handle.net/10203/262745
Appears in Collection
BiS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 39 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0