A 230-260-GHz Wideband and High-Gain Amplifier in 65-nm CMOS Based on Dual-Peak G(max)-Core

Cited 48 time in webofscience Cited 30 time in scopus
  • Hit : 497
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorPark, Dae-Woongko
dc.contributor.authorUtomo, Dzuhri Radityoko
dc.contributor.authorLam, Bao Huuko
dc.contributor.authorLee, Sang-Gugko
dc.contributor.authorHong, Jong-Philko
dc.date.accessioned2019-06-19T01:10:07Z-
dc.date.available2019-06-19T01:10:07Z-
dc.date.created2019-06-18-
dc.date.created2019-06-18-
dc.date.created2019-06-18-
dc.date.created2019-06-18-
dc.date.issued2019-06-
dc.identifier.citationIEEE JOURNAL OF SOLID-STATE CIRCUITS, v.54, no.6, pp.1613 - 1623-
dc.identifier.issn0018-9200-
dc.identifier.urihttp://hdl.handle.net/10203/262728-
dc.description.abstractThis paper proposes a wideband and high-gain amplifier design technique based on a dual-peak maximum achievable gain (G(max)) core. The proposed technique achieves a power gain close to G(max) at two frequencies simultaneously, thereby enabling the implementation of a wideband and high-gain amplifier. The input, output, and interstage matching networks are designed in a gain compensating manner, considering the gain variation of the dual-peak G(max)-core. The four-stage amplifier based on an identical dual-peak G(max)-core at each stage is implemented in a 65-nm CMOS process. The measured results show a 3-dB bandwidth of 30 GHz (227.5-257.2 GHz), a gain of 12.4 +/- 1.5 dB, and a peak power added efficiency (PAE) of 1.6% with dc power dissipation of 23.8 mW, which corresponds to the widest 3-dB bandwidth and gain per stage comparable to those of other reported CMOS amplifiers operating at frequencies above 200 GHz.-
dc.languageEnglish-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.titleA 230-260-GHz Wideband and High-Gain Amplifier in 65-nm CMOS Based on Dual-Peak G(max)-Core-
dc.typeArticle-
dc.identifier.wosid000469840600010-
dc.identifier.scopusid2-s2.0-85066458326-
dc.type.rimsART-
dc.citation.volume54-
dc.citation.issue6-
dc.citation.beginningpage1613-
dc.citation.endingpage1623-
dc.citation.publicationnameIEEE JOURNAL OF SOLID-STATE CIRCUITS-
dc.identifier.doi10.1109/JSSC.2019.2899515-
dc.contributor.localauthorLee, Sang-Gug-
dc.contributor.nonIdAuthorUtomo, Dzuhri Radityo-
dc.contributor.nonIdAuthorLam, Bao Huu-
dc.contributor.nonIdAuthorHong, Jong-Phil-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorAmplifier-
dc.subject.keywordAuthorCMOS-
dc.subject.keywordAuthordual-peak-
dc.subject.keywordAuthorgain boosting-
dc.subject.keywordAuthormaximum achievable gain (G(max))-
dc.subject.keywordAuthorterahertz (THz)-
dc.subject.keywordAuthorwideband-
dc.subject.keywordPlusPOWER-GAIN-
dc.subject.keywordPlusTERAHERTZ SPECTROSCOPY-
dc.subject.keywordPlusGHZ AMPLIFIER-
dc.subject.keywordPlusTRANSMISSION-
dc.subject.keywordPlusDESIGN-
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 48 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0