Facile Fabrication of High-Definition Hierarchical Wrinkle Structures for Investigating the Geometry-Sensitive Fate Commitment of Human Neural Stem Cells

Cited 16 time in webofscience Cited 15 time in scopus
  • Hit : 389
  • Download : 0
As neural stem cells (NSCs) interact with biophysical cues from their niche during development, it is important to understand the biomolecular mechanism of how the NSCs process these biophysical cues to regulate their behaviors. In particular, anisotropic geometric cues in micro-/nanoscale have been utilized to investigate the biophysical effect of the structure on NSCs behaviors. Here, a series of new nanoscale anisotropic wrinkle structures with the a range of wavelength scales (from 50 nm to 37 mu m) was developed to demonstrate the effect of the anisotropic nanostructure on the fate commitment of NSCs. Intriguingly, two distinct characteristic length scales promoted the neurogenesis. Each wavelength scale showed a striking variation in terms of dependency on the directionality of the structures, suggesting the existence of at least two different ways in the processing of anisotropic geometries for neurogenesis. Furthermore, the combined effect of the two distinctive length scales was observed by employing hierarchical multiscale wrinkle structures with two characteristic neurogenesis-promoting wavelengths. Taken together, the wrinkle structure system developed in this study can serve as an effective platform to advance the understanding of how cells sense anisotropic geometries for their specific cellular behaviors. Furthermore, this could provide clues for improving nerve regeneration system of stem cell therapies.
Publisher
AMER CHEMICAL SOC
Issue Date
2019-05
Language
English
Article Type
Article
Citation

ACS APPLIED MATERIALS & INTERFACES, v.11, no.19, pp.17247 - 17255

ISSN
1944-8244
DOI
10.1021/acsami.9b03479
URI
http://hdl.handle.net/10203/262622
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 16 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0