Importance of Critical Molecular Weight of Semicrystalline n-Type Polymers for Mechanically Robust, Efficient Electroactive Thin Films

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 65
  • Download : 0
Mechanical properties of conducting polymers are an essential consideration in the design of flexible and stretchable electronics, but the guidelines for the material design having both high mechanical and electrical properties remain limited. Here we provide an important guideline for the design of mechanically robust, electroactive polymer thin films in terms of the molecular weight of the polymers. These studies based on a highly efficient, representative n-type conjugated polymer (P(NDI2OD-T2)) revealed a marked enhancement in mechanical properties across a narrow molecular weight range, highlighting the existence of a critical molecular weight that can be exploited to engineer films that balance processability and mechanical and electronic properties. We found the thin films formed from high molecular weight polymers (i.e., number-average molecular weight (M-n) similar to 163 kg mol(-1)) to exhibit superior mechanical compliance and robustness, with a 114-fold enhanced strain at fracture and a 2820-fold enhanced toughness, as compared to those of low molecular weight polymer films (M-n = 15 kg mol(-1)). In particular, we observed a jump in the mechanical properties between the M-n = 48 and 103 kg mol(-1), yielding a 26-fold enhanced strain at fracture and a 160-fold enhanced toughness. The significant improvement of tensile properties indicates the presence of a critical molecular weight at which entangled polymer networks start to form, as supported by the analysis of the thermal and crystalline properties, specific viscosity, and microstructure. Our work provides useful guidelines for the design of conjugated polymers with recommendations for the best combinations of mechanical robustness and electrical performance for flexible and stretchable electronics.
Publisher
AMER CHEMICAL SOC
Issue Date
2019-05
Language
English
Article Type
Article
Citation

CHEMISTRY OF MATERIALS, v.31, no.9, pp.3163 - 3173

ISSN
0897-4756
DOI
10.1021/acs.chemmater.8b05114
URI
http://hdl.handle.net/10203/262620
Appears in Collection
CBE-Journal Papers(저널논문)ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0