The effect of Schiff base network on the separation performance of thin film nanocomposite forward osmosis membranes

Cited 27 time in webofscience Cited 23 time in scopus
  • Hit : 368
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorAkther, Nawshadko
dc.contributor.authorLim, Sungilko
dc.contributor.authorTran, Van Huyko
dc.contributor.authorPhuntsho, Sherubko
dc.contributor.authorYang, Yanqinko
dc.contributor.authorBae, Tae-Hyunko
dc.contributor.authorGhaffour, Noreddineko
dc.contributor.authorShon, Ho Kyongko
dc.date.accessioned2019-05-29T09:25:09Z-
dc.date.available2019-05-29T09:25:09Z-
dc.date.created2019-05-29-
dc.date.created2019-05-29-
dc.date.created2019-05-29-
dc.date.created2019-05-29-
dc.date.issued2019-06-
dc.identifier.citationSEPARATION AND PURIFICATION TECHNOLOGY, v.217, pp.284 - 293-
dc.identifier.issn1383-5866-
dc.identifier.urihttp://hdl.handle.net/10203/262342-
dc.description.abstractIn this study, Schiff base network-1 (SNW-1) nanoparticles, which are covalent organic frameworks (COFs), were used as fillers in the polyamide (PA) active layer to elevate the performance of thin-film nanocomposite (TFN) forward osmosis (FO) membranes. The TFN membranes were prepared by interfacial polymerization (IP) of m-phenylenediamine (MPD) and trimesoyl chloride (TMC), and the SNW-1 nanoparticles were dispersed in the MPD aqueous solution at various concentrations. The secondary amine groups of SNW-1 nanoparticles reacted with the acyl chloride groups of TMC during the IP reaction to form strong covalent/amide bonds, which facilitated better interface integration of SNW-1 nanoparticles in the PA layer. Additionally, the incorporation of amine-rich SNW-1 nanoparticles into the TFN membranes improved their surface hydrophilicity, and the porous structure of SNW-1 nanoparticles offered additional channels for transport of water molecules. The TFN0.005 membrane with a SNW-1 nanoparticle loading of 0.005 wt% demonstrated a higher water flux than that of pristine TFC membrane in both AL-FS (12.0 vs. 9.3 L m(-2) h(-1)) and AL-DS (25.2 vs. 19.4 L m(-2) h(-1)) orientations when they were tested with deionized water and 0.5 M NaCl as feed and draw solution, respectively.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE BV-
dc.titleThe effect of Schiff base network on the separation performance of thin film nanocomposite forward osmosis membranes-
dc.typeArticle-
dc.identifier.wosid000465054100032-
dc.identifier.scopusid2-s2.0-85061718429-
dc.type.rimsART-
dc.citation.volume217-
dc.citation.beginningpage284-
dc.citation.endingpage293-
dc.citation.publicationnameSEPARATION AND PURIFICATION TECHNOLOGY-
dc.identifier.doi10.1016/j.seppur.2019.02.034-
dc.contributor.localauthorBae, Tae-Hyun-
dc.contributor.nonIdAuthorAkther, Nawshad-
dc.contributor.nonIdAuthorLim, Sungil-
dc.contributor.nonIdAuthorTran, Van Huy-
dc.contributor.nonIdAuthorPhuntsho, Sherub-
dc.contributor.nonIdAuthorYang, Yanqin-
dc.contributor.nonIdAuthorGhaffour, Noreddine-
dc.contributor.nonIdAuthorShon, Ho Kyong-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorForward osmosis (FO)-
dc.subject.keywordAuthorInterfacial polymerization (IP)-
dc.subject.keywordAuthorCovalent organic frameworks (COFs)-
dc.subject.keywordAuthorSchiff base network-1 (SNW-1)-
dc.subject.keywordAuthorThin-film nanocomposite (TFN) membrane-
dc.subject.keywordPlusCOVALENT ORGANIC FRAMEWORK-
dc.subject.keywordPlusGRAPHENE OXIDE-
dc.subject.keywordPlusFO MEMBRANE-
dc.subject.keywordPlusENHANCED PERFORMANCE-
dc.subject.keywordPlusPOLYAMIDE MEMBRANES-
dc.subject.keywordPlusTFN MEMBRANES-
dc.subject.keywordPlusWATER FLUX-
dc.subject.keywordPlusCOMPOSITE-
dc.subject.keywordPlusNANOTUBES-
dc.subject.keywordPlusRO-
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 27 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0