Single-color centers implanted in diamond nanostructures

Cited 48 time in webofscience Cited 51 time in scopus
  • Hit : 391
  • Download : 0
The development of material-processing techniques that can be used to generate optical diamond nanostructures containing a single-color center is an important problem in quantum science and technology. In this work, we present the combination of ion implantation and top-down diamond nanofabrication in two scenarios: diamond nanopillars and diamond nanowires. The first device consists of a 'shallow' implant (similar to 20 nm) to generate nitrogen-vacancy (NV) color centers near the top surface of the diamond crystal prior to device fabrication. Individual NV centers are then mechanically isolated by etching a regular array of nanopillars in the diamond surface. Photon anti-bunching measurements indicate that a high yield (> 10%) of the devices contain a single NV center. The second device demonstrates 'deep' (similar to 1 mu m) implantation of individual NV centers into diamond nanowires as a post-processing step. The high single-photon flux of the nanowire geometry, combined with the low background fluorescence of the ultrapure diamond, allowed us to observe sustained photon anti-bunching even at high pump powers.
Publisher
IOP PUBLISHING LTD
Issue Date
2011-04
Language
English
Article Type
Article
Citation

NEW JOURNAL OF PHYSICS, v.13

ISSN
1367-2630
DOI
10.1088/1367-2630/13/4/045004
URI
http://hdl.handle.net/10203/262337
Appears in Collection
PH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 48 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0