Probing Conformational Changes of Ubiquitin by Host-Guest Chemistry Using Electrospray Ionization Mass Spectrometry

Cited 28 time in webofscience Cited 28 time in scopus
  • Hit : 283
  • Download : 0
We report mechanistic studies of structural changes of ubiquitin (Ub) by host-guest chemistry with cucurbit[6]uril (CB[6]) using electrospray ionization mass spectrometry (ESI-MS) combined with circular dichroism spectroscopy and molecular dynamics (MD) simulation. CB[6] binds selectively to lysine (Lys) residues of proteins. Low energy collision-induced dissociation (CID) of the protein-CB[6] complex reveals CB[6] binding sites. We previously reported (Anal. Chem. 2011, 83, 7916-7923) shifts in major charge states along with Ub-CB[6] complexes in the ESI-MS spectrum with addition of CB[6] to Ub from water. We also reported that CB[6] is present only at Lys(6) or Lys(11) in high charge state (+13) complex. In this study, we provide additional information to explain unique conformational change mechanisms of Ub by host-guest chemistry with CB[6] compared with solvent-driven conformational change of Ub. Additional CID study reveals that CB[6] is bound only to Lys(48) and Lys(63) in low charge state (+7) complex. MD simulation studies reveal that the high charge state complexes are attributed to the CB[6] bound to Lys(11). The complexation prohibits salt bridge formation between Lys(11) and Glu(34) and induces conformational change of Ub. This results in formation of high charge state complexes in the gas phase. Then, by utilizing stronger host-guest chemistry of CB[6] with pentamethylenediamine, refolding of Ub via detaching CB[6] from the protein is performed. Overall, this study gives an insight into the mechanism of denatured Ub ion formation via host-guest interactions with CB[6]. Furthermore, this provides a direction for designing function-controllable supramolecular system comprising proteins and synthetic host molecules.
Publisher
SPRINGER
Issue Date
2013-01
Language
English
Article Type
Article
Keywords

GAS-PHASE; NONCOVALENT ATTACHMENT; PROTEIN-STRUCTURE; ION MOBILITY; SYSTEM; RECOGNITION; MECHANISMS; COMPLEXES; DYNAMICS; DENSITY

Citation

JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, v.24, no.1, pp.21 - 29

ISSN
1044-0305
DOI
10.1007/s13361-012-0496-6
URI
http://hdl.handle.net/10203/255292
Appears in Collection
EEW-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 28 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0