Challenges and implemented technologies used in autonomous drone racing

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 48
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorMoon, Hyungpilko
dc.contributor.authorMartinez-Carranza, Joseko
dc.contributor.authorCieslewski, Titusko
dc.contributor.authorFaessler, Matthiasko
dc.contributor.authorFalanga, Davideko
dc.contributor.authorSimovic, Alessandroko
dc.contributor.authorScaramuzza, Davideko
dc.contributor.authorLi, Shuoko
dc.contributor.authorOzo, Michaelko
dc.contributor.authorDe Wagter, Christopheko
dc.contributor.authorde Croon, Guidoko
dc.contributor.authorHwang, Sunyouko
dc.contributor.authorJung, Sunggooko
dc.contributor.authorShim, Hyunchulko
dc.contributor.authorKim, Haeryangko
dc.contributor.authorPark, Minhyukko
dc.contributor.authorAu, Tsz-Chiuko
dc.contributor.authorKim, Si Jungko
dc.date.accessioned2019-04-15T14:12:45Z-
dc.date.available2019-04-15T14:12:45Z-
dc.date.created2019-03-26-
dc.date.issued2019-04-
dc.identifier.citationINTELLIGENT SERVICE ROBOTICS, v.12, no.2, pp.137 - 148-
dc.identifier.issn1861-2776-
dc.identifier.urihttp://hdl.handle.net/10203/253953-
dc.description.abstractAutonomous drone racing (ADR) is a challenge for autonomous drones to navigate a cluttered indoor environment without relying on any external sensing in which all the sensing and computing must be done with onboard resources. Although no team could complete the whole racing track so far, most successful teams implemented waypoint tracking methods and robust visual recognition of the gates of distinct colors because the complete environmental information was given to participants before the events. In this paper, we introduce the purpose of ADR as a benchmark testing ground for autonomous drone technologies and analyze challenges and technologies used in the two previous ADRs held in IROS 2016 and IROS 2017. Five teams which participated in these events present their implemented technologies that cover modified ORB-SLAM, robust alignment method for waypoints deployment, sensor fusion for motion estimation, deep learning for gate detection and motion control, and stereo-vision for gate detection.-
dc.languageEnglish-
dc.publisherSPRINGER HEIDELBERG-
dc.titleChallenges and implemented technologies used in autonomous drone racing-
dc.typeArticle-
dc.identifier.wosid000460631800001-
dc.identifier.scopusid2-s2.0-85062632735-
dc.type.rimsART-
dc.citation.volume12-
dc.citation.issue2-
dc.citation.beginningpage137-
dc.citation.endingpage148-
dc.citation.publicationnameINTELLIGENT SERVICE ROBOTICS-
dc.identifier.doi10.1007/s11370-018-00271-6-
dc.contributor.localauthorShim, Hyunchul-
dc.contributor.nonIdAuthorMoon, Hyungpil-
dc.contributor.nonIdAuthorMartinez-Carranza, Jose-
dc.contributor.nonIdAuthorCieslewski, Titus-
dc.contributor.nonIdAuthorFaessler, Matthias-
dc.contributor.nonIdAuthorFalanga, Davide-
dc.contributor.nonIdAuthorSimovic, Alessandro-
dc.contributor.nonIdAuthorScaramuzza, Davide-
dc.contributor.nonIdAuthorLi, Shuo-
dc.contributor.nonIdAuthorOzo, Michael-
dc.contributor.nonIdAuthorDe Wagter, Christophe-
dc.contributor.nonIdAuthorde Croon, Guido-
dc.contributor.nonIdAuthorHwang, Sunyou-
dc.contributor.nonIdAuthorJung, Sunggoo-
dc.contributor.nonIdAuthorKim, Haeryang-
dc.contributor.nonIdAuthorPark, Minhyuk-
dc.contributor.nonIdAuthorAu, Tsz-Chiu-
dc.contributor.nonIdAuthorKim, Si Jung-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorAutonomous drone-
dc.subject.keywordAuthorDrone racing-
dc.subject.keywordAuthorAutonomous flight-
dc.subject.keywordAuthorAutonomous navigation-
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0