Optimal policies for greenhouse gas emission minimization under multiple agency budget constraints in pavement management

Cited 8 time in webofscience Cited 0 time in scopus
  • Hit : 48
  • Download : 0
Greenhouse gas emissions reduction has garnered special importance in recent times in the transportation sector, including pavement design and management. In this study, we incorporate this environmental objective in pavement management. We present an optimization problem to minimize GHG emissions under multiple budget constraints by determining joint management strategies for a range of heterogeneous interventions, including maintenance, rehabilitation and reconstruction. We propose a computationally efficient bottom-up solution algorithm, which is built on Lagrangian Relaxation and Dynamic Programming. Finally, we apply our findings to a real-world highway network in California, where the results show a potential GHG emissions reduction of 20% through an increased combined budget of 35% on the Pareto frontier. (C) 2017 Elsevier Ltd. All rights reserved.
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Issue Date
2017-08
Language
English
Article Type
Article
Citation

TRANSPORTATION RESEARCH PART D-TRANSPORT AND ENVIRONMENT, v.55, pp.39 - 50

ISSN
1361-9209
DOI
10.1016/j.trd.2017.06.009
URI
http://hdl.handle.net/10203/251534
Appears in Collection
GT-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 8 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0