Successful genetic modification of porcine spermatogonial stem cells via an electrically responsive Au nanowire injector

Cited 7 time in webofscience Cited 5 time in scopus
  • Hit : 336
  • Download : 0
Transgenic pigs are quite useful in many biomedical fields, such as xenotransplantation research and the production of biopharmaceutical materials. The genetic transformation of porcine spermatogonial stem cells (pSSCs) followed by differentiation into mature spermatozoa enables the effective production of transgenic pigs. Improving the transfection efficiency of pSSCs, however, has been much desired. Herein, we report the efficient genetic modification of pSSCs by using an electrically responsive Au nanowire injector (E-R Au NWI). This is the first study that shows an exogenous gene is directly delivered into the nucleus of a pSSC by using a 1-dimensional nanomaterial and then successfully expressed to produce a protein. The E-R Au NWI interfaced noninvasively with the nucleus of the pSSC, and the pEGFP-N1 plasmid was delivered by the application of an electrical stimulus without cell damage. Compared to the results of conventional nonviral vector-based gene delivery methods such as jetPEI, Lipofectamine, and electroporation, the E-R Au NWI-based method improved the pSSC transfection efficiency by at least 6.7-fold and even up to 46.7-fold. Furthermore, we successfully obtained transgenic pSSCs containing the human bone morphogenetic protein 2 gene by using E-R Au NWIs. This result suggests that the E-R Au NWI enables the efficient genetic modification of pSSCs and can be employed to produce diverse kinds of transgenic pigs.
Publisher
ELSEVIER SCI LTD
Issue Date
2019-02
Language
English
Article Type
Article
Citation

BIOMATERIALS, v.193, pp.22 - 29

ISSN
0142-9612
DOI
10.1016/j.biomaterials.2018.12.005
URI
http://hdl.handle.net/10203/250481
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 7 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0