Joule heating-induced sp(2)-restoration in graphene fibers

Cited 43 time in webofscience Cited 0 time in scopus
  • Hit : 463
  • Download : 0
Joule heating can instantaneously achieve high temperatures (>2000 degrees C) by applying electrical current on a resistive material. This ohmic heating by the passage of an electric current through a conducting domain may effectively heal the defective sites (i.e., vacancies, structural defects, and sp(3) oxygen groups) of graphene oxide (GO) and revert them into sp(2) domains. Indeed, the direction of electric field controls the texture of GO with preferential alignment, which significantly affects the transport properties along the fiber axis. Here we present electrical current-induced manipulation of resistive domain (i.e. Joule heating) as an effective healing method for the defect sites in GO fibers (GOFs). Systematic control of input current restores the sp(2) lattice structures within fibers in a well-controlled manner. Structural evolution mechanism is proposed for multilayer stacked graphitic structures as well as graphene sheet plane under the reduction process. This defect-healing principle is rapid, environmentally benign and energy efficient, compared to other defect restoration methods, and yields tailored-aligned fibers with a high current-carrying capability and facile charge transport, which is potentially beneficial for power cables and other relevant applications. (C) 2018 Elsevier Ltd. All rights reserved.
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Issue Date
2019-02
Language
English
Article Type
Article
Citation

CARBON, v.142, pp.230 - 237

ISSN
0008-6223
DOI
10.1016/j.carbon.2018.10.041
URI
http://hdl.handle.net/10203/248656
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 43 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0