Machine learning-based self-powered acoustic sensor for speaker recognition

Cited 112 time in webofscience Cited 0 time in scopus
  • Hit : 658
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorHan, Jae Hyunko
dc.contributor.authorBae, Kang Minko
dc.contributor.authorHong, Seong Kwangko
dc.contributor.authorPark, Hyunsinko
dc.contributor.authorKwak, Jun-Hyukko
dc.contributor.authorWang, Hee Seungko
dc.contributor.authorJoe, Daniel Juhyungko
dc.contributor.authorPark, Jung Hwanko
dc.contributor.authorJung, Young Hoonko
dc.contributor.authorHur, Shinko
dc.contributor.authorYoo, Chang-Dongko
dc.contributor.authorLee, Keon Jaeko
dc.date.accessioned2018-11-22T07:07:47Z-
dc.date.available2018-11-22T07:07:47Z-
dc.date.created2018-11-19-
dc.date.created2018-11-19-
dc.date.issued2018-11-
dc.identifier.citationNANO ENERGY, v.53, pp.658 - 665-
dc.identifier.issn2211-2855-
dc.identifier.urihttp://hdl.handle.net/10203/246895-
dc.description.abstractHerein, we report a new platform of machine learning-based speaker recognition via the flexible piezoelectric acoustic sensor (f-PAS) with a highly sensitive multi-resonant frequency band. The resonant self-powered f-PAS was fabricated by mimicking the operating mechanism of the basilar membrane in the human cochlear. The f-PAS acquired abundant voice information from the multi-channel sound inputs. The standard TIDIGITS dataset were recorded by the f-PAS and converted to frequency components by using a Fast Fourier Transform (FFT) and a Short-Time Fourier Transform (STFT). The machine learning based Gaussian Mixture Model (GMM) was designed by utilizing the most highest and second highest sensitivity data among multi-channel outputs, exhibiting outstanding speaker recognition rate of 97.5% with error rate reduction of 75% compared to that of the reference MEMS microphone.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE BV-
dc.subjectVOICE RECOGNITION-
dc.subjectNANOSENSORS-
dc.titleMachine learning-based self-powered acoustic sensor for speaker recognition-
dc.typeArticle-
dc.identifier.wosid000448994600074-
dc.identifier.scopusid2-s2.0-85053804870-
dc.type.rimsART-
dc.citation.volume53-
dc.citation.beginningpage658-
dc.citation.endingpage665-
dc.citation.publicationnameNANO ENERGY-
dc.identifier.doi10.1016/j.nanoen.2018.09.030-
dc.contributor.localauthorJoe, Daniel Juhyung-
dc.contributor.localauthorYoo, Chang-Dong-
dc.contributor.localauthorLee, Keon Jae-
dc.contributor.nonIdAuthorBae, Kang Min-
dc.contributor.nonIdAuthorHong, Seong Kwang-
dc.contributor.nonIdAuthorKwak, Jun-Hyuk-
dc.contributor.nonIdAuthorJung, Young Hoon-
dc.contributor.nonIdAuthorHur, Shin-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorFlexible piezoelectric-
dc.subject.keywordAuthorSelf-powered-
dc.subject.keywordAuthorAcoustic sensor-
dc.subject.keywordAuthorMachine learning algorithm-
dc.subject.keywordAuthorSpeaker recognition-
dc.subject.keywordPlusVOICE RECOGNITION-
dc.subject.keywordPlusNANOSENSORS-
Appears in Collection
RIMS Journal PapersEE-Journal Papers(저널논문)MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 112 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0