A Facile and Scalable Route to the Preparation of Catalytic Membranes with in Situ Synthesized Supramolecular Dendrimer Particle Hosts for Pt(0) Nanoparticles Using a Low-Generation PAMAM Dendrimer (G1-NH2) as Precursor

Cited 8 time in webofscience Cited 0 time in scopus
  • Hit : 389
  • Download : 0
Since the first reports of Cu dendrimer-encapsulated nanoparticles (DENs) published in 1998, the dendrimer-templating method has become the best and most versatile method for preparing ultrafine metallic and bimetallic nanoparticles (1-3 nm) with well-defined compositions, high catalytic activity, and tunable selectivity. However, DENs have remained for the most part model systems with limited prospects for scale up and integration into high-performance and reusable catalytic modules and systems for industrial scale applications. Here, we describe a facile and scalable route to the preparation of catalytic polyvinylidene fluoride (PVDF) membranes with in situ synthesized supramolecular dendrimer particles (SDPs) that can serve as hosts and containers for Pt(0) nanoparticles (2-3 nm). These new catalytic membranes were prepared using a reactive encapsulation process similar to that utilized to prepare Pt DENs by addition of a reducing agent (sodium borohydride) to aqueous complexes of Pt(II) + G4-OH/G6-OH polyamidoamine (PAMAM) dendrimers. However, the SDPs (2.4 mu m average diameter) of our new mixed matrix PVDF-PAMAM membranes were synthesized in the dope dispersion without purification prior to film casting using (i) a low-generation PAMAM dendrimer (G1-NH2) as particle precursor and (ii) epichlorohydrin, an inexpensive functional reagent, as cross-linker. In addition, the membrane PAMAM particles contain secondary amine groups (similar to 1.9 mequiv per gram of dry membrane), which are more basic and thus have higher Pt binding affinity than the tertiary amine groups of the G4-OH and G6-OH PAMAM dendrimers. Proof-of-concept experiments show that our new PVDF-PAMAM-G1-Pt/membranes can serve as highly active and reusable catalysts for the hydrogenation of alkenes and alkynes to the corresponding alkanes using (i) H-2 at room temperature and a pressure of 1 bar and (ii) low catalyst loadings of similar to 1.4-1.6 mg of Pt. Using cyclohexene as model substrate, we observed near quantitative conversion to cyclohexane (similar to 98%). The regeneration studies showed that our new Pt/membrane catalysts are stable and can be reused for five consecutive reaction cycles for a total duration of 120 h including 60 h of heating at 100 degrees C under vacuum for substrate, product, and solvent removal with no detectable loss of cyclohexene hydrogenation activity. The overall results of our study point to a promising, versatile, and scalable path for the integration of catalytic membranes with in situ synthesized SDP hosts for Pt(0) nanoparticles into high-throughput modules and systems for heterogeneous catalytic hydrogenations, an important class of reactions that are widely utilized in industry to produce pharmaceuticals, agrochemicals, and specialty chemicals.
Publisher
AMER CHEMICAL SOC
Issue Date
2018-10
Language
English
Article Type
Article
Keywords

PEGYLATED POLYETHYLENEIMINE PARTICLES; POLYVINYLIDENE FLUORIDE MEMBRANES; ENCAPSULATED NANOPARTICLES; PVDF MEMBRANES; GAS-SEPARATION; FUEL-CELLS; HYDROGENATION; PLATINUM; NANOCLUSTERS; NANOCOMPOSITES

Citation

ACS APPLIED MATERIALS & INTERFACES, v.10, no.39, pp.33238 - 33251

ISSN
1944-8244
DOI
10.1021/acsami.8b11351
URI
http://hdl.handle.net/10203/246569
Appears in Collection
EEW-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 8 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0