Hierarchical Extended Bilateral Motion Estimation based Frame Rate Up-Conversion using Learning based Linear Mapping

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 61
  • Download : 0
We present a novel and effective learning-based frame rate upconversion (FRUC) scheme, using linear mapping. The proposed learning-based FRUC scheme consists of: 1) a new hierarchical extended bilateral motion estimation (HEBME) method; 2) a light-weight motion deblur (LWMD) method; and 3) a synthesis-based motion-compensated frame interpolation (S-MCFI) method. First, the HEBME method considerably enhances the accuracy of the motion estimation (ME), which can lead to a significant improvement of the FRUC performance. The proposed HEBME method consists of two ME pyramids with a three-layered hierarchy, where the motion vectors (MVs) are searched in a coarse-to-fine manner via each pyramid. The found MVs are further refined in an enhanced resolution of four times by jointly combining the MVs from the two pyramids. The HEBME method employs a new elaborate matching criterion for precise ME which effectively combines a bilateral absolute difference, an edge variance, pixel variances, and an MV difference among two consecutive blocks and its neighboring blocks. Second, the LWMD method uses the MVs found by the HEBME method and removes the small motion blurs in original frames via transformations by linear mapping. Third, the S-MCFI method finally generates interpolated frames by applying linear mapping kernels for the deblurred original frames. In consequence, our FRUC scheme is capable of precisely generating interpolated frames based on the HEBME for accurate ME, the S-MCFI for elaborate frame interpolation, and the LWMD for contrast enhancement. The experimental results show that our FRUC significantly outperforms the state-of-the-art non-deep learning-based schemes with an average of 1.42 dB higher in the peak signal-to-noise-ratio and shows comparable performance with the state-of-the-art deep learning-based scheme.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2018-12
Language
English
Article Type
Article
Keywords

COMPENSATION; FUSION; IMAGE

Citation

IEEE TRANSACTIONS ON IMAGE PROCESSING, v.27, no.12, pp.5918 - 5932

ISSN
1057-7149
DOI
10.1109/TIP.2018.2861567
URI
http://hdl.handle.net/10203/245631
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0