Nanoparticle-Assisted Transcutaneous Delivery of a Signal Transducer and Activator of Transcription 3-Inhibiting Peptide Ameliorates Psoriasis-like Skin Inflammation

Cited 2 time in webofscience Cited 0 time in scopus
  • Hit : 210
  • Download : 0
Signal transducer and activator of transcription 3 (STAT3) is constitutively activated in psoriatic skin inflammation and acts as a key player in the pathogenesis and progression of this autoimmune disease. Although numerous inhibitors that intervene in STAT3-associated pathways have been tested, an effective, highly specific inhibitor of STAT3 has yet to be identified. Here, we evaluated the in vitro and in vivo biological activity and therapeutic efficacy of a high-affinity peptide specific for STAT3 (APTstat3) after topical treatment via intradermal and transcutaneous delivery. Using a preclinical model of psoriasis, we show that intradermal injection of APTstat3 tagged with a 9-arginine cell-penetrating peptide (APTstat3-9R) reduced disease progression and modulated psoriasis-related cytokine signaling through inhibition of STAT3 phosphorylation. Furthermore, by complexing APTstat3-9R with specific lipid formulations led to formation of discoidal lipid nanoparticles (DLNPs), we were able to achieve efficient skin penetration of the STAT3-inhibiting peptide after transcutaneous administration, thereby effectively inhibiting psoriatic skin inflammation. Collectively, these findings suggest that DLNP-assisted transcutaneous delivery of a STAT3-inhibiting peptide could be a promising strategy for treating psoriatic skin inflammation without causing adverse systemic events. Moreover, the DLNP system could be used for transdermal delivery of other therapeutic peptides.
Publisher
AMER CHEMICAL SOC
Issue Date
2018-07
Language
English
Article Type
Article
Citation

ACS NANO, v.12, no.7, pp.6904 - 6916

ISSN
1936-0851
DOI
10.1021/acsnano.8b02330
URI
http://hdl.handle.net/10203/245198
Appears in Collection
NT-Journal Papers(저널논문)BS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 2 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0