Monolithic Polymer Nanoridges with Programmable Wetting Transitions

Cited 14 time in webofscience Cited 0 time in scopus
  • Hit : 99
  • Download : 0
This paper describes polymeric nanostructures with dynamically tunable wetting properties. Centimeter-scale areas of monolithic nanoridges can be generated by strain relief of thermoplastic polyolefin films with fluoropolymer skin layers. Changing the amount of strain results in polyolefin ridges with aspect ratios greater than four with controlled feature densities. Surface chemistry and topography are demonstrated to be able to be tailored by SF6-plasma etching to access multiple wetting states: Wenzel, Cassie-Baxter, and Cassie-impregnating states. Reversible transitions among the wetting states can be realized in a programmable manner by cyclic stretching and reshrinking the patterned substrates without delamination and cracking.
Publisher
WILEY-V C H VERLAG GMBH
Issue Date
2018-08
Language
English
Article Type
Article
Citation

ADVANCED MATERIALS, v.30, no.32

ISSN
0935-9648
DOI
10.1002/adma.201706657
URI
http://hdl.handle.net/10203/245177
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 14 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0