A Robust Approach for Efficient Sodium Storage of GeS2 Hybrid Anode by Electrochemically Driven Amorphization

Cited 3 time in webofscience Cited 0 time in scopus
  • Hit : 106
  • Download : 0
Sodium ion batteries (NIBs) have become attractive promising alternatives to lithium ion batteries in a broad field of future energy storage applications. The development of high-performance anode materials has become an essential factor and a great challenge toward satisfying the requirements for NIBs, advancement. This work is the first report on GeS2 nanocomposites uniformly distributed on reduced graphene oxide (rGO) as promising anode materials for NIBs prepared via a facile hydrothermal synthesis and a unique carbo-thermal annealing. The results show that the GeS2/rGO hybrid anode yields a high reversible specific capacity of 805 mA h g(-1) beyond the theoretical capacity, an excellent rate capability of 616 mA h g(-1) at 5 A g(-1), and a cycle retention of 89.4% after 100 cycles. A combined ex situ characterization study reveals that the electrochemically driven amorphization plays a key role in achieving efficient sodium storage by accommodating excess sodium ions in the electrode materials. Understanding the sequential conversion-alloying reaction mechanism for GeS2/rGO hybrid anodes provides a new approach for developing high-performance energy storage applications.
Publisher
WILEY-V C H VERLAG GMBH
Issue Date
2018-03
Language
English
Article Type
Article
Keywords

NA-ION BATTERIES; NEGATIVE ELECTRODES; ENERGY-STORAGE; HIGH-CAPACITY; GERMANIUM; CRYSTALLIZATION; NANOPARTICLES; PERFORMANCE; CHALLENGES; CARBON

Citation

ADVANCED ENERGY MATERIALS, v.8, no.18

ISSN
1614-6832
DOI
10.1002/aenm.201703499
URI
http://hdl.handle.net/10203/244591
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 3 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0