Thermal-Variation Insensitive Force-Touch Sensing System Using Transparent Piezoelectric Thin-Film

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 95
  • Download : 0
A force-touch (z-axis) sensor for display applications has attracted considerable attention. The z-axis sensing layer can be realized by a transparent piezoelectric thin film due to its superior characteristics, such as thinness, flexibility, and an optical transparency. However, this film responds not only to pressure but also to thermal changes (pyroelectric characteristic), which is a major obstacle to commercialization. This paper presents a thermal-variation insensitive, force-touch sensing system using a transparent piezoelectric thin film. In conjunction with optimizations in analog front-end design for high gain and high speed, the threshold-based digital processing scheme, which effectively rejects pyroelectric signals and noises, is proposed. To validate the proposed design and method, the electronic readout system board composed of analog circuits and an eight-bit microcontroller unit was implemented, and it read out the force-touch signal with a ten-bit resolution in power consumption of 6.5 mW. The implemented readout system was experimentally verified with a 3.9-inch polyvinylidene fluoride-copolymer piezoelectric thin-film sensor, with a thickness of 20 mu m. The system achieves a force-to-signal gain of 0.6 V/N in a range of 0.3-2.5 N with high linearity. The capability to reject a pyroelectric signal up to +/- Delta 10 degrees C/s was also proved through a thermal-shock experiment.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2018-07
Language
English
Article Type
Article
Citation

IEEE SENSORS JOURNAL, v.18, no.14, pp.5863 - 5875

ISSN
1530-437X
DOI
10.1109/JSEN.2018.2839356
URI
http://hdl.handle.net/10203/244539
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0