Model Assisted Multi-band Fusion for Single Image Enhancement and Applications to Robot Vision

Cited 80 time in webofscience Cited 0 time in scopus
  • Hit : 650
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorCho, Younggunko
dc.contributor.authorJeong, Jinyongko
dc.contributor.authorKim, Ayoungko
dc.date.accessioned2018-07-24T02:57:03Z-
dc.date.available2018-07-24T02:57:03Z-
dc.date.created2018-07-08-
dc.date.created2018-07-08-
dc.date.created2018-07-08-
dc.date.created2018-07-08-
dc.date.created2018-07-08-
dc.date.issued2018-10-
dc.identifier.citationIEEE ROBOTICS AND AUTOMATION LETTERS, v.3, no.4, pp.2822 - 2829-
dc.identifier.issn2377-3766-
dc.identifier.urihttp://hdl.handle.net/10203/244524-
dc.description.abstractThis paper presents a fast single image enhancement that is applicable regardless of channels in various environments. The main idea of the paper is combining model-based and fusion-based dehazing methods, thereby presenting balanced image enhancement while elaborating image details. The proposed method enhances both color and grayscale images without any prior information. Multiband decomposition is utilized to extract the base and detail layers for intensity and Laplacian modules. The proposed ambient map and transmission estimation for the intensity module are effective in restoring the true intensity. Adaptive nonlinear mapping functions adjust details on each residual layer. Through color-corrected reconstruction, our results demonstrate outstanding performance on various types of hazy images. The proposed method is thoroughly validated in terms of conventional image quality comparison. We also provide the evaluation at the application phase from both the semantic (segmentation) and geometric (direct odometry) vision based robotics application. The overall algorithm is presented in https://youtu.be/3Fk3kbaPkXQ.-
dc.languageEnglish-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.titleModel Assisted Multi-band Fusion for Single Image Enhancement and Applications to Robot Vision-
dc.typeArticle-
dc.identifier.wosid000436456300002-
dc.identifier.scopusid2-s2.0-85063304445-
dc.type.rimsART-
dc.citation.volume3-
dc.citation.issue4-
dc.citation.beginningpage2822-
dc.citation.endingpage2829-
dc.citation.publicationnameIEEE ROBOTICS AND AUTOMATION LETTERS-
dc.identifier.doi10.1109/LRA.2018.2843127-
dc.contributor.localauthorKim, Ayoung-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorComputer vision for other robotic applications-
dc.subject.keywordAuthorlocalization-
dc.subject.keywordAuthorsemantic scene understanding-
Appears in Collection
CE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 80 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0