Visual comfort assessment for stereoscopic 3D contents by using binocular fusion deep network. = 양안 융합 심층 네트워크를 이용한 스테레오스코픽 3D 영상 불편감 측정

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 209
  • Download : 0
Stereoscopic three-dimensional (S3D) contents have received a significant interest from industries and research fields because they could provide enhanced viewing experiences. However, with the increasing interest of the S3D contents, the concerns are emerging for the safety of stereoscopic imaging. To address the issues of viewing safety in S3D contents, it is essential to develop a reliable objective visual comfort assessment (VCA), aiming to predict the visual discomfort of the displayed S3D contents. In this thesis, we propose a novel VCA method for S3D contents by using deep convolutional neural network (DCNN). To effectively predict visual discomfort in S3D contents viewing, the proposed network mainly consists of two parts; 1) spatial feature encoding part on monocular image: multi-level spatial features are encoded from each view (monocular image) to consider various type of spatial characteristics. 2) binocular feature encoding part: multi-level spatial features from left- and right views (binocular images) are combined to encode S3D discomfort factors. During training the proposed network, disparity information is used through knowledge transfer and regularization method to encode binocular features in S3D VCA, since disparity is main factor leading the S3D discomfort factors. By the extensive and comparative experiments using IEEE-SA dataset, the results show that the proposed binocular fusion deep networks yield excellent prediction performance.
Advisors
Ro, Yong Manresearcher노용만researcher
Description
한국과학기술원 :전기및전자공학부,
Publisher
한국과학기술원
Issue Date
2017
Identifier
325007
Language
eng
Description

학위논문(석사) - 한국과학기술원 : 전기및전자공학부, 2017.8,[iii, 23 p. :]

Keywords

visual comfort assessment (VCA)▼astereoscopic image▼adisparity▼aconvolutional neural network (CNN)▼adeep learning▼afusion network; 영상 불편감 측정▼a스테레오스코픽 영상▼a디스패리티▼a컨벌루션 신경망▼a심층 학습▼a융합네트워크

URI
http://hdl.handle.net/10203/243374
Link
http://library.kaist.ac.kr/search/detail/view.do?bibCtrlNo=718707&flag=dissertation
Appears in Collection
EE-Theses_Master(석사논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0