추천 수량과 재 추천을 고려한 사용자 기반 협업 필터링 추천 시스템 = (A) user based collaborative filtering recommender system with inventory and repetitive recommendation considerations

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 149
  • Download : 0
추천 시스템은 정보기술과 인터넷의 발달로 생긴 문제인 정보 과부하를 줄여 선택의 질을 높이는 기술로 우리 생활 곳곳에서 활용되고 있다. 기존의 추천 시스템 연구는 주로 영화나 음악 등의 콘텐츠 추천을 대상으로 했으며, 이 연구들에서는 추천 수량과 기존에 경험했던 상품의 재 추천이 고려되지 않았다. 하지만 다양한 분야에서 데이터가 점점 방대해지고 복잡해짐에 따라 추천 시스템의 중요성은 더욱 부각되고 있으며, 더욱 다양한 분야에서 추천 시스템 적용의 필요성이 커지고 있다. 이를 위해 추천 수량과 재 추천이 고려되는 보다 범용적이고 확장된 추천 시스템 방법의 개발이 필요하다. 또 기존 연구에서는 추천 시스템이 온라인 상에서 적용된 경우가 많았고 개별 고객을 대상으로 한 경우가 많았는데, 오프라인 상에서 개별 고객이 아닌 매장에도 추천 시스템을 적용할 수 있다. 특히 오프라인 매장을 대상으로 할 때는 추천 시스템을 마케팅 전략 수립 등 경영적인 의사 결정 과정에 활용하고 그 효과를 보일 수 있다. 본 연구에서는 추천 시스템에서 가장 널리 사용되는 알고리즘 중 하나인 사용자 기반 협업 필터링 알고리즘에서 추천 수량과 재 추천을 고려하는 방법을 제안한다. 또 이를 오프라인 의류 매장의 재고 관리 문제에 적용함으로써 다양한 분야에 추천 시스템을 활용할 수 있음을 보인다. 오프라인 의류 매장에서는 물리적인 제약으로 인해 수만 가지의 상품 중 일부만 매장에 진열하고 판매할 수 있다. 따라서 어떤 상품이 해당 매장에서 잘 팔릴지를 고려해 진열할 상품과 수량을 결정해야 한다. 또한 의류 산업은 유행에 민감하기 때문에 특히 재고 관리가 중요한 분야다. 본 연구에서는 추천 수량과 재 추천을 고려하는 사용자 기반 협업 필터링 추천 시스템을 통해 각 매장에 수요가 높을 것으로 예측되는 상품과 예상 판매 수량을 예측하여, 해당 상품을 구비하고 진열할 것을 추천한다. 본 연구에서 제안한 모델은 MAE, Precision, Recall, F_1 measure 관점에서 기준 모델보다 추천 성능이 더 뛰어나다. 또 제안한 방법과 같이 추천 수량이 고려되는 추천 시스템의 성능을 평가하기에 적합한, 추천 수량 부족과 초과에 따른 패널티를 고려하는 새로운 Quantity Precision, Quantity Recall, Quantity F_1 measure 계산 방식을 제안한다. 또한 참신성 지표를 분석함으로써 제안한 방법의 신규 매출 창출 효과를 평가한다. 본 연구에서 제안한 방법은 추천 수량과 재 추천을 고려했다는 점, 온라인이 아닌 오프라인 데이터를 사용했다는 점, 개별 고객이 아닌 매장을 추천 대상으로 했다는 점에서 기존 추천 시스템 연구와는 차별되는 의의를 가진다. 마지막으로 이는 녹색 공급 사슬 관리 관점에서 재고 관리를 최적화 함으로써 탄소 배출을 줄이는 데에 기여한다.
Advisors
안재현researcherAhn, Jae-Hyeonresearcher
Description
한국과학기술원 :경영공학부,
Publisher
한국과학기술원
Issue Date
2017
Identifier
325007
Language
kor
Description

학위논문(석사) - 한국과학기술원 : 경영공학부, 2017.2,[x, 56 p. :]

Keywords

추천 시스템▼a사용자 기반 협업 필터링▼a추천 수량▼a재 추천▼a재고 관리▼a오프라인 의류 매장▼a부족 패널티▼a초과 패널티▼a참신성▼a그룹 추천 시스템▼a녹색 공급 사슬 관리▼a탄소배출; Recommender system▼aUser based Collaborative filtering▼aRecommendation quantity▼aRepetitive recommendations▼aInventory management▼aOffline▼aFashion retail store▼aMAE▼aPrecision▼aRecall▼aF1 measure▼aShortage penalty▼aExcess penalty▼aNovelty▼aGroup recommender system▼aGreen supply chain management▼aCarbon emission

URI
http://hdl.handle.net/10203/242727
Link
http://library.kaist.ac.kr/search/detail/view.do?bibCtrlNo=708721&flag=dissertation
Appears in Collection
MT-Theses_Master(석사논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0