Recombinant Escherichia coli as a biofactory for various single- and multi-element nanomaterials

Cited 89 time in webofscience Cited 0 time in scopus
  • Hit : 462
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorChoi, Yoojinko
dc.contributor.authorPark, Tae Jungko
dc.contributor.authorLee, Doh Changko
dc.contributor.authorLee, Sang Yupko
dc.date.accessioned2018-06-19T08:28:23Z-
dc.date.available2018-06-19T08:28:23Z-
dc.date.created2018-06-18-
dc.date.created2018-06-18-
dc.date.created2018-06-18-
dc.date.created2018-06-18-
dc.date.issued2018-06-
dc.identifier.citationPROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, v.115, no.23, pp.5944 - 5949-
dc.identifier.issn0027-8424-
dc.identifier.urihttp://hdl.handle.net/10203/242605-
dc.description.abstractNanomaterials (NMs) are mostly synthesized by chemical and physical methods, but biological synthesis is also receiving great attention. However, the mechanisms for biological producibility of NMs, crystalline versus amorphous, are not yet understood. Here we report biosynthesis of 60 different NMs by employing a recombinant Escherichia coli strain coexpressing metallothionein, a metal-binding protein, and phytochelatin synthase that synthesizes a metal-binding peptide phytochelatin. Both an in vivo method employing live cells and an in vitro method employing the cell extract are used to synthesize NMs. The periodic table is scanned to select 35 suitable elements, followed by biosynthesis of their NMs. Nine crystalline single-elements of Mn3O4, Fe3O4, Cu2O, Mo, Ag, In(OH)(3), SnO2, Te, and Au are synthesized, while the other 16 elements result in biosynthesis of amorphous NMs or no NM synthesis. Producibility and crystallinity of the NMs are analyzed using a Pourbaix diagram that predicts the stable chemical species of each element for NM biosynthesis by varying reduction potential and pH. Based on the analyses, the initial pH of reactions is changed from 6.5 to 7.5, resulting in biosynthesis of various crystalline NMs of those previously amorphous or notsynthesized ones. This strategy is extended to biosynthesize multi-element NMs including CoFe2O4, NiFe2O4, ZnMn2O4, ZnFe2O4, Ag2S, Ag2TeO3, Ag2WO4, Hg3TeO6, PbMoO4, PbWO4, and Pb-5(VO4)(3)OH NMs. The strategy described here allows biosynthesis of NMs with various properties, providing a platform for manufacturing various NMs in an environmentally friendly manner.-
dc.languageEnglish-
dc.publisherNATL ACAD SCIENCES-
dc.titleRecombinant Escherichia coli as a biofactory for various single- and multi-element nanomaterials-
dc.typeArticle-
dc.identifier.wosid000434114900047-
dc.identifier.scopusid2-s2.0-85048003663-
dc.type.rimsART-
dc.citation.volume115-
dc.citation.issue23-
dc.citation.beginningpage5944-
dc.citation.endingpage5949-
dc.citation.publicationnamePROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-
dc.identifier.doi10.1073/pnas.1804543115-
dc.contributor.localauthorLee, Doh Chang-
dc.contributor.localauthorLee, Sang Yup-
dc.contributor.nonIdAuthorPark, Tae Jung-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorbiosynthesis-
dc.subject.keywordAuthornanomaterials-
dc.subject.keywordAuthorEscherichia coli-
dc.subject.keywordAuthorsingle element-
dc.subject.keywordAuthormulti-element-
dc.subject.keywordPlusIN-VIVO SYNTHESIS-
dc.subject.keywordPlusMETAL NANOPARTICLES-
dc.subject.keywordPlusBIOSYNTHESIS-
dc.subject.keywordPlusMECHANISM-
dc.subject.keywordPlusBACTERIA-
dc.subject.keywordPlusPROTEINS-
dc.subject.keywordPlusCELLS-
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 89 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0