Deep Facial Age Estimation Using Conditional Multitask Learning With Weak Label Expansion

Cited 6 time in webofscience Cited 0 time in scopus
  • Hit : 112
  • Download : 0
Accurate age estimation from a facial image is quite challenging, since physical age and apparent age can be quite different, and this difference is dependent on gender, ethnicity, and many other factors. Multitask deep learning is one of the approach to improve age estimation by employing auxiliary tasks, such as gender recognition, that are related to the primary task. However, in traditional multitask learning for age estimation, the relationship between the primary and auxiliary tasks is difficult to describe; how the auxiliary tasks enhance the model for the primary objective is ambiguous. In this letter, we propose a conditional multitask learning method that architecturally factorizes an age variable into gender-conditioned age probabilities in a deep neural network. The lack of accurate training labels with discrete age values is another critical limitation to training age estimation models. Therefore, we propose a label expansion method that increases the number of accurate labels from weakly supervised categorical labels. To verify the generality of the proposed method, we perform intensive experiments on the publicly available MORPH-II and FG-NET datasets. The proposed methods outperform state-of-the art methods in both age estimation and gender recognition accuracy. These performance gains are verified on well-known deep network architectures-VGG-16, CASIA-WebFace, and Alexnet-to confirm the proposed methods generality.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2018-06
Language
English
Article Type
Article
Keywords

FEATURES

Citation

IEEE SIGNAL PROCESSING LETTERS, v.25, no.6, pp.808 - 812

ISSN
1070-9908
DOI
10.1109/LSP.2018.2822241
URI
http://hdl.handle.net/10203/242327
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 6 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0