Improving Arterial Spin Labeling by using Deep Learning

Cited 12 time in webofscience Cited 0 time in scopus
  • Hit : 154
  • Download : 0
Purpose: To develop a deep learning algorithm that generates arterial spin labeling (ASL) perfusion images with higher accuracy and robustness by using a smaller number of subtraction images. Materials and Methods: For ASL image generation from pair-wise subtraction, we used a convolutional neural network (CNN) as a deep learning algorithm. The ground truth perfusion images were generated by averaging six or seven pairwise subtraction images acquired with (a) conventional pseudocontinuous arterial spin labeling from seven healthy subjects or (b) Hadamard-encoded pseudocontinuous ASL from 114 patients with various diseases. CNNs were trained to generate perfusion images from a smaller number (two or three) of subtraction images and evaluated by means of cross-validation. CNNs from the patient data sets were also tested on 26 separate stroke data sets. CNNs were compared with the conventional averaging method in terms of mean square error and radiologic score by using a paired t test and/or Wilcoxon signed-rank test. Results: Mean square errors were approximately 40% lower than those of the conventional averaging method for the cross-validation with the healthy subjects and patients and the separate test with the patients who had experienced a stroke (P < .001). Region-of-interest analysis in stroke regions showed that cerebral blood flow maps from CNN (mean +/- standard deviation, 19.7 mL per 100 g/min +/- 9.7) had smaller mean square errors than those determined with the conventional averaging method (43.2 +/- 29.8) (P < .001). Radiologic scoring demonstrated that CNNs suppressed noise and motion and/or segmentation artifacts better than the conventional averaging method did (P < .001). Conclusion: CNNs provided superior perfusion image quality and more accurate perfusion measurement compared with those of the conventional averaging method for generation of ASL images from pair-wise subtraction images. (C)RSNA, 2017
Publisher
RADIOLOGICAL SOC NORTH AMERICA
Issue Date
2018-05
Language
English
Article Type
Article
Keywords

CEREBRAL PERFUSION; SEGMENTATION

Citation

RADIOLOGY, v.287, no.2, pp.658 - 666

ISSN
0033-8419
DOI
10.1148/radiol.2017171154
URI
http://hdl.handle.net/10203/242245
Appears in Collection
BiS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 12 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0