Automatic LPI Radar Wave form Recognition Using CNN

Cited 10 time in webofscience Cited 0 time in scopus
  • Hit : 338
  • Download : 0
Detecting and classifying the modulation scheme of the intercepted noisy low probability of intercept (LPI) radar signals in real time is a necessary survival technique required in the electronic warfare systems. Therefore, LPI radar waveform recognition technique (LWRT) has gained an increasing attention recently. In this paper, we propose a convolutional neural network (CNN)-based LWRT, where the input and hyperparameters of the CNN, such as the input size, number of filters, filter size, and number of neurons are designed based on various signal conditions to guarantee the maximum classification performance. In addition, we propose a sample averaging technique to efficiently reduce the large computational cost required when the intercept receiver needs to process a large amount of signal samples to improve the detection sensitivity. We demonstrate the performance of the proposed LWRT with numerous Monte Carlo simulations based on the simulation conditions used in the recent LWRTs introduced in the literature. It is testified that the proposed LWRT offers significant improvement, such as robustness to noise and recognition accuracy, over the recent LWRTs.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2018-01
Language
English
Article Type
Article
Citation

IEEE ACCESS, v.6, pp.4207 - 4219

ISSN
2169-3536
DOI
10.1109/ACCESS.2017.2788942
URI
http://hdl.handle.net/10203/240933
Appears in Collection
GT-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 10 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0