Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network

Cited 2 time in webofscience Cited 0 time in scopus
  • Hit : 261
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorChoi, Joonhyangko
dc.contributor.authorEun, Hyun Junko
dc.contributor.authorKim, Chang-Ickko
dc.date.accessioned2018-02-21T05:35:41Z-
dc.date.available2018-02-21T05:35:41Z-
dc.date.created2017-06-16-
dc.date.created2017-06-16-
dc.date.issued2018-01-
dc.identifier.citationJournal of Signal Processing Systems, v.90, no.1, pp.87 - 97-
dc.identifier.issn1939-8018-
dc.identifier.urihttp://hdl.handle.net/10203/240117-
dc.description.abstractProximal dental caries are diagnosed using dental X-ray images. Unfortunately, the diagnosis of proximal dental caries is often stifled due to the poor quality of dental X-ray images. Therefore, we propose an automatic detection system to detect proximal dental caries in periapical images for the first time. The system comprises four modules: horizontal alignment of pictured teeth, probability map generation, crown extraction, and refinement. We first align the pictured teeth horizontally as a pre-process to minimize performance degradation due to rotation. Next, a fully convolutional network are used to produce a caries probability map while crown regions are extracted based on optimization schemes and an edge-based level set method. In the refinement module, the caries probability map is refined by the distance probability modeled by crown regions since caries are located near tooth surfaces. Also we adopt non-maximum suppression to improve the detection performance. Experiments on various periapical images reveal that the proposed system using a convolutional neural network (CNN) and crown extraction is superior to the system using a naïve CNN.-
dc.languageEnglish-
dc.publisherSpringer US-
dc.subjectX-RAY IMAGES-
dc.subjectHUMAN IDENTIFICATION-
dc.subjectACTIVE CONTOURS-
dc.subjectSYSTEM-
dc.subjectCLASSIFICATION-
dc.subjectHISTOGRAMS-
dc.subjectFEATURES-
dc.subjectTEETH-
dc.subjectMODEL-
dc.titleBoosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network-
dc.typeArticle-
dc.identifier.wosid000419914800007-
dc.identifier.scopusid2-s2.0-85001843012-
dc.type.rimsART-
dc.citation.volume90-
dc.citation.issue1-
dc.citation.beginningpage87-
dc.citation.endingpage97-
dc.citation.publicationnameJournal of Signal Processing Systems-
dc.identifier.doi10.1007/s11265-016-1214-6-
dc.contributor.localauthorKim, Chang-Ick-
dc.contributor.nonIdAuthorChoi, Joonhyang-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorDental X-ray images-
dc.subject.keywordAuthorProximal dental caries-
dc.subject.keywordAuthorConvolutional neural networks-
dc.subject.keywordAuthorDental image segmentation-
dc.subject.keywordAuthorVariational methods-
dc.subject.keywordPlusX-RAY IMAGES-
dc.subject.keywordPlusHUMAN IDENTIFICATION-
dc.subject.keywordPlusACTIVE CONTOURS-
dc.subject.keywordPlusSYSTEM-
dc.subject.keywordPlusCLASSIFICATION-
dc.subject.keywordPlusHISTOGRAMS-
dc.subject.keywordPlusFEATURES-
dc.subject.keywordPlusTEETH-
dc.subject.keywordPlusMODEL-
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 2 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0