Nano-electromechanical Switch Based on a Physical Unclonable Function for Highly Robust and Stable Performance in Harsh Environments

Cited 4 time in webofscience Cited 0 time in scopus
  • Hit : 100
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorHwang, Kyu-Manko
dc.contributor.authorPark, Jun-Youngko
dc.contributor.authorBae, Hagyoulko
dc.contributor.authorLee, Seung-Wookko
dc.contributor.authorKim, Choong-Kiko
dc.contributor.authorSeo, Myungsooko
dc.contributor.authorIm, Hwonko
dc.contributor.authorKim, Do-Hyunko
dc.contributor.authorKim, Seong-Yeonko
dc.contributor.authorLee, Geon-Beomko
dc.contributor.authorChoi, Yang-Kyuko
dc.date.accessioned2018-02-21T05:09:12Z-
dc.date.available2018-02-21T05:09:12Z-
dc.date.created2018-01-22-
dc.date.created2018-01-22-
dc.date.created2018-01-22-
dc.date.issued2017-12-
dc.identifier.citationACS NANO, v.11, no.12, pp.12547 - 12552-
dc.identifier.issn1936-0851-
dc.identifier.urihttp://hdl.handle.net/10203/239930-
dc.description.abstractA physical unclonable function (PUF) device using a nano-electromechanical (NEM) switch was demonstrated. The most important feature of the NEM-switch-based PUF is its use of stiction. Stiction is one of the chronic problems associated with micro- and nano-electromechanical system (MEMS/NEMS) devices; however, here, it was utilized to intentionally implement a PUF for hardware-based security. The stiction is caused by capillary and van der Waals forces, producing strong adhesion, which can be utilized to design a highly robust and stable PUF. The probability that stiction will. occur on either of two gates in the NEM switch is the same, and consequently, the occurrence of the stiction is random and unique, which is critical to its PUF performance. This uniqueness was evaluated by measuring the interchip Hamming distance (interchip HD), which characterizes how different responses are made when the same challenge is applied. Uniformity was also evaluated by the proportion of "1" or "0" in the response bit-string. The reliability of the proposed PUF device was assessed by stress tests under harsh environments such as high temperature, high dose radiation, and microwaves.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.subjectSTICTION-
dc.subjectADHESION-
dc.subjectENERGY-
dc.subjectMEMORY-
dc.subjectKEYS-
dc.titleNano-electromechanical Switch Based on a Physical Unclonable Function for Highly Robust and Stable Performance in Harsh Environments-
dc.typeArticle-
dc.identifier.wosid000418990200083-
dc.identifier.scopusid2-s2.0-85040068338-
dc.type.rimsART-
dc.citation.volume11-
dc.citation.issue12-
dc.citation.beginningpage12547-
dc.citation.endingpage12552-
dc.citation.publicationnameACS NANO-
dc.identifier.doi10.1021/acsnano.7b06658-
dc.contributor.localauthorChoi, Yang-Kyu-
dc.contributor.nonIdAuthorHwang, Kyu-Man-
dc.contributor.nonIdAuthorLee, Seung-Wook-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorphysical unclonable function-
dc.subject.keywordAuthorstiction-
dc.subject.keywordAuthorsilicon nanowire-
dc.subject.keywordAuthorNEM switch-
dc.subject.keywordAuthorNEMS-
dc.subject.keywordAuthorsecurity-
dc.subject.keywordPlusSTICTION-
dc.subject.keywordPlusADHESION-
dc.subject.keywordPlusENERGY-
dc.subject.keywordPlusMEMORY-
dc.subject.keywordPlusKEYS-
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 4 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0