Deformation behavior of powder-metallurgy processed high-strain-rate superplastic 20%SiCp/2124 Al composite in a wide range of temperature

Deformation behavior of high-strain-rate superplastic PM 20%SiCp/2124 Al composite was investigated over a wide range of temperature from 643 to 838 K. The entire temperature range of investigation was separated into two regions where grain boundary sliding (high-temperature range from 748 to 838 K: region I) and dislocation climb creep (low-temperature range from 643 to 693 K: region II) dominate the plastic flow, respectively. Determination of true activation energy at a constant value of modulus-compensated effective stress reveals that the energy for region I is considerably higher than that for lattice diffusion in aluminum, Q(L), while the energy for region II is close to Q(L). The composite was shown to be stronger in region II than the unreinforced PM 2124 Al alloy but weaker in region I. The threshold-stress behavior was investigated as a function of temperature. Different behavior was observed between region I and region II. (C) 1999 Elsevier Science S.A. All rights reserved.
Publisher
ELSEVIER SCIENCE SA
Issue Date
1999-08
Language
ENG
Keywords

CREEP-BEHAVIOR; MATRIX COMPOSITES; ALUMINUM COMPOSITE; ALLOY; STRESS

Citation

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, v.269, no.1-2, pp.142 - 151

ISSN
0921-5093
URI
http://hdl.handle.net/10203/2379
Appears in Collection
MS-Journal Papers(저널논문)
  • Hit : 421
  • Download : 6
  • Cited 0 times in thomson ci
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡClick to seewebofscience_button
⊙ Cited 26 items in WoSClick to see citing articles inrecords_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0