The 19S proteasome is directly involved in the regulation of heterochromatin spreading in fission yeast

Cited 15 time in webofscience Cited 0 time in scopus
  • Hit : 761
  • Download : 0
Cumulative evidence suggests that non-proteolytic functions of the proteasome are involved in transcriptional regulation, mRNA export, and ubiquitin-dependent histone modification and thereby modulate the intracellular levels of regulatory proteins implicated in controlling key cellular functions. To date, the non-proteolytic roles of the proteasome have been mainly investigated in euchromatin; their effects on heterochromatin are largely unknown. Here, using fission yeast as a model, we randomly mutagenized the subunits of the 19S proteasome subcomplex and sought to uncover a direct role of the proteasome in heterochromatin regulation. We identified a mutant allele, rpt4-1, that disrupts a non-proteolytic function of the proteasome, also known as a non-proteolytic allele. Experiments performed using rpt4-1 cells revealed that the proteasome is involved in the regulation of heterochromatin spreading to prevent its uncontrolled invasion into neighboring euchromatin regions. Intriguingly, the phenotype of the non-proteolytic rpt4-1 mutant resembled that of epe1 cells, which lack the Epe1 protein that counteracts heterochromatin spreading. Both mutants exhibited variegated gene-silencing phenotypes across yeast colonies, spreading of heterochromatin, bypassing of the requirement for RNAi in heterochromatin formation at the outer repeat region (otr), and up-regulation of RNA polymerase II. Further analysis revealed Mst2, another factor that antagonizes heterochromatin spreading, may function redundantly with Rpt4. These observations suggest that the 19S proteasome may be involved in modulating the activities of Epe1 and Mst2. In conclusion, our findings indicate that the proteasome appears to have a heterochromatin-regulating function that is independent of its canonical function in proteolysis.
Publisher
AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
Issue Date
2017-10
Language
English
Article Type
Article
Keywords

JMJC DOMAIN PROTEIN; RNA-POLYMERASE-II; 26S PROTEASOME; CHROMOSOME SEGREGATION; HISTONE TURNOVER; ACTIVE CHROMATIN; S-PHASE; TRANSCRIPTION; COMPLEX; PARTICLE

Citation

JOURNAL OF BIOLOGICAL CHEMISTRY, v.292, no.41, pp.17144 - 17155

ISSN
0021-9258
DOI
10.1074/jbc.M117.790824
URI
http://hdl.handle.net/10203/226909
Appears in Collection
BS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 15 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0