초기 소량 데이터와 RNN을 활용한 루머 전파 추적 기법 Initial Small Data Reveal Rumor Traits via Recurrent Neural Networks

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 334
  • Download : 0
온라인 소셜미디어의 등장으로 방대한 사용자 데이터가 수집되고 이는 루머의 탐지와 같은 복잡하고 도전적인 사회 문제를 자료 기반 기법으로 해결할 수 있게끔 한다. 최근 딥러닝 기반 모델들이 이러한 문제를 해결하기 위한 빠르고 정확한 기법 중의 하나로서 소개되었다. 하지만 기존에 제시된 모델들은 전파 종료 후 작동하거나 오랜 관찰기간을 필요로 하여 활용성이 제한된다. 이 연구에서는 초기 소량데이터만을 활용하는 recurrent neural networks (RNNs) 기반의 빠른 루머 분류 알고리즘을 제안한다. 제시된 모델은 소셜미디어 스트림을 시계열 자료로 변환하여 사용하며, 이 때 시계열 데이터는 팔로워 수와 같이 정보 전파자 관련 정보는 물론 주어진 컨텐츠에서 추론한 언어심리학적 감성의 점수로 구성된다. 수백만의 트윗을 포함하는 498개의 실제 루머 및 494개의 비루머 사례 분석을 통해 이 연구는 제안하는 RNN 기반 모델이 초기 30개의 트윗 만으로도 (초기 수시간) 0.74 F1의 높은 성능을 보임을 확인한다. 이러한 결과는 실제 응용가능한 수준의 빠르고 효율적인 루머 분류 알고리즘 개발의 초석이 된다.
Publisher
한국정보과학회
Issue Date
2017-07
Language
Korean
Keywords

루머; 딥러닝; 시계열; 언어적 특징; 사용자 특징; 분류기; Rumor; deep learning; time series; user traits; linguistic traits; classification

Citation

정보과학회논문지, v.44, no.7, pp.680 - 685

ISSN
2383-630X
URI
http://hdl.handle.net/10203/226024
Appears in Collection
CS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0