객체의 움직임을 고려한 탐색영역 설정에 따른 가중치를 공유하는 CNN구조 기반의 객체 추적

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 136
  • Download : 0
Object Tracking is a technique for tracking moving objects over time in a video image. Using object tracking technique, many research are conducted such a detecting dangerous situation and recognizing the movement of nearby objects in a smart car. However, it still remains a challenging task such as occlusion, deformation, background clutter, illumination variation, etc. In this paper, we propose a novel deep visual object tracking method that can be operated in robust to many challenging task. For the robust visual object tracking, we proposed a Convolutional Neural Network(CNN) which shares weight of the convolutional layers. Input of the CNN is a three; first frame object image, object image in a previous frame, and current search frame containing the object movement. Also we propose a method to consider the motion of the object when determining the current search area to search for the location of the object. Extensive experimental results on a authorized resource database showed that the proposed method outperformed than the conventional methods.
Publisher
한국멀티미디어학회
Issue Date
2017-07
Language
Korean
Keywords

Object Tracking; Convolutional Neural Network; Search Area; Object Movement

Citation

멀티미디어학회논문지, v.20, no.7, pp.986 - 993

ISSN
1229-7771
DOI
10.9717/kmms.2017.20.7.986
URI
http://hdl.handle.net/10203/225673
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0