Ranking hand movements for myoelectric pattern recognition considering forearm muscle structure

Previous pattern recognition algorithms using surface electromyography (sEMG) have been developed for subsets of predefined hand movements without considering muscle structure. In order to decode hand movements, it is important to know which movements are appropriate for PR due to the different independence of movements between individuals and the high correlated characteristics of sEMG patterns between movements. This paper proposes a method to personally rank the order of hand movements from subsets (31 finger flexion, 31 finger extension, and 4 wrist movements in this paper). The movements were sorted into a ranked order with respect to the locations of the electrodes on the proximal forearm and the distal forearm. We evaluated the classification error as the number of desired movements (N (m)) changed. The maximum N (m) with an error lower than 10% was 20 for the proximal forearm and 10 for the distal forearm from ranked movements of individuals. Our method could help to identify the optimized order of hand movements considering the personal characteristics of each individual.
Publisher
SPRINGER HEIDELBERG
Issue Date
2017-08
Language
English
Keywords

UPPER-LIMB PROSTHESES; SURFACE EMG SIGNALS; ELECTROMYOGRAPHIC SIGNALS; FINGER MOVEMENTS; CLASSIFICATION; ROBOT; INDEPENDENCE; SENSORS; FLEXION

Citation

MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, v.55, no.8, pp.1507 - 1518

ISSN
0140-0118
DOI
10.1007/s11517-016-1608-4
URI
http://hdl.handle.net/10203/225593
Appears in Collection
CS-Journal Papers(저널논문)ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
  • Hit : 31
  • Download : 0
  • Cited 0 times in thomson ci
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡClick to seewebofscience_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0