Automatic Trimap Generation and Consistent Matting for Light-Field Images

Cited 8 time in webofscience Cited 0 time in scopus
  • Hit : 436
  • Download : 0
In this paper, we introduce an automatic approach to generate trimaps and consistent alpha mattes of foreground objects in a light-field image. Our method first performs binary segmentation to roughly segment a light-field image into foreground and background based on depth and color. Next, we estimate accurate trimaps through analyzing color distribution along the boundary of the segmentation using guided image filter and KL-divergence. In order to estimate consistent alpha mattes across sub-images, we utilize the epipolar plane image (EPI) where colors and alphas along the same epipolar line must be consistent. Since EPI of foreground and background are mixed in the matting area, we propagate the EPI from definite foreground/background regions to unknown regions by assuming depth variations within unknown regions are spatially smooth. Using the EPI constraint, we derive two solutions to estimate alpha when color samples along epipolar line are known, and unknown. To further enhance consistency, we refine the estimated alpha mattes by using the multi-image matting Laplacian with an additional EPI smoothness constraint. In experimental evaluations, we have created a dataset where the ground truth alpha mattes of light-field images were obtained by using the blue screen technique. A variety of experiments show that our proposed algorithm produces both visually and quantitatively high-quality alpha mattes for light-field images.
Publisher
IEEE COMPUTER SOC
Issue Date
2017-08
Language
English
Article Type
Article
Citation

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, v.39, no.8, pp.1504 - 1517

ISSN
0162-8828
DOI
10.1109/TPAMI.2016.2606397
URI
http://hdl.handle.net/10203/225078
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 8 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0