Phase transitions for information diffusion in random clustered networks

Cited 2 time in webofscience Cited 0 time in scopus
  • Hit : 25
  • Download : 0
We study the conditions for the phase transitions of information diffusion in complexnetworks. Using the random clustered network model, a generalisation of the Chung-Lurandom network model incorporating clustering, we examine the effect of clustering underthe Susceptible-Infected-Recovered (SIR) epidemic diffusion model with heterogeneouscontact rates. For this purpose, we exploit the branching process to analyse informationdiffusion in random unclustered networks with arbitrary contact rates, and provide noveliterative algorithms for estimating the conditions and sizes of global cascades,respectively. Showing that a random clustered network can be mapped into a factor graph,which is a locally tree-like structure, we successfully extend our analysis to randomclustered networks with heterogeneous contact rates. We then identify the conditions forphase transitions of information diffusion using our method. Interestingly, for variouscontact rates, we prove that random clustered networks with higher clustering coefficientshave strictly lower phase transition points for any given degree sequence. Finally, weconfirm our analytical results with numerical simulations of both synthetically-generatedand real-world networks.
Publisher
SPRINGER
Issue Date
2016-09
Language
English
Article Type
Article
Citation

EUROPEAN PHYSICAL JOURNAL B, v.89, no.9

ISSN
1434-6036
DOI
10.1140/epjb/e2016-60612-y
URI
http://hdl.handle.net/10203/224575
Appears in Collection
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 2 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0