Optimal Energy and Catalyst Temperature Management of Plug-in Hybrid Electric Vehicles for Minimum Fuel Consumption and Tail-Pipe Emissions

Cited 37 time in webofscience Cited 0 time in scopus
  • Hit : 365
  • Download : 0
Control of plug-in hybrid electric vehicles (PHEVs) poses a different challenge from that of the conventional hybrid electric vehicle (HEV) because the battery energy is designed to deplete throughout the drive cycle. In particular, when the travel distance exceeds the all-electric range (AER) of a PHEV and when tailpipe emissions are considered, optimal operation of the PHEV must consider optimization of the performance over a time horizon. In this paper, we develop a method to synthesize a supervisory powertrain controller (SPC) that achieves near-optimal fuel economy and tailpipe emissions under known travel distances. We first find the globally optimal solution using the dynamic programming (DP) technique, which provides an optimal control policy and state trajectories. Based on the analysis of the optimal state trajectories, a new variable energy-to-distance ratio (EDR), theta, is introduced to quantify the level of battery state-of-charge (SOC) relative to the remaining distance. This variable plays an important role in adjusting both energy and catalyst thermal management strategies for PHEVs. A novel extraction method is developed to extract adjustable engine on/off, gear-shift, and power-split strategies from the DP control policy over the entire state space. Based on the extracted results, an adaptive SPC that optimally adjusts the engine on/off, gear-shift, and power-split strategies under various EDR and catalyst temperature conditions was developed to achieve near-optimal fuel economy and emission performance.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2013-01
Language
English
Article Type
Article
Citation

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, v.21, no.1, pp.14 - 26

ISSN
1063-6536
DOI
10.1109/TCST.2011.2171344
URI
http://hdl.handle.net/10203/223887
Appears in Collection
GT-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 37 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0