A methodology for a quantitative assessment of safety culture in NPPs based on Bayesian networks

For a long time, safety has been recognized as a top priority in high-reliability industries such as aviation and nuclear power plants (NPPs). Establishing a safety culture requires a number of actions to enhance safety, one of which is changing the safety culture awareness of workers. The concept of safety culture in the nuclear power domain was established in the International Atomic Energy Agency (IAEA) safety series, wherein the importance of employee attitudes for maintaining organizational safety was emphasized. Safety culture assessment is a critical step in the process of enhancing safety culture. In this respect, assessment is focused on measuring the level of safety culture in an organization, and improving any weakness in the organization. However, many continue to think that the concept of safety culture is abstract and unclear. In addition, the results of safety culture assessments are mostly subjective and qualitative. Given the current situation, this paper suggests a quantitative methodology for safety culture assessments based on a Bayesian network. A proposed safety culture framework for NPPs would include the following: (1) a norm system, (2) a safety management system, (3) safety culture awareness of worker, and (4) Worker behavior. The level of safety culture awareness of workers at NPPs was reasoned through the proposed methodology. Then, areas of the organization that were vulnerable in terms of safety culture were derived by analyzing observational evidence. We also confirmed that the frequency of events involving human error decreases when the level of safety culture is high. It is anticipated that the causality between the safety culture awareness of worker and the state of safety at NPPs can be verified using the proposed methodology. (C) 2016 Elsevier Ltd. All rights reserved.
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Issue Date
2017-04
Language
English
Keywords

RELIABILITY; ACCIDENTS

Citation

ANNALS OF NUCLEAR ENERGY, v.102, pp.23 - 36

ISSN
0306-4549
DOI
10.1016/j.anucene.2016.08.023
URI
http://hdl.handle.net/10203/223224
Appears in Collection
NE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
  • Hit : 178
  • Download : 0
  • Cited 0 times in thomson ci
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡClick to seewebofscience_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0