Extraordinary figure-of-merit of magnetic resonance from ultrathin silicon nanohole membrane as all-dielectric metamaterial

Cited 5 time in webofscience Cited 0 time in scopus
  • Hit : 736
  • Download : 0
Metamaterial allows novel nanophotonic applications such as negative permeability, negative refractive index, and near-zero index. In particular, all-dielectric metamaterials recently create new opportunities for manipulating electromagnetic fields, taking full advantage of low-loss, bandwidth enhancement, and isotropic responses. Here a silicon dielectric metamaterial is reported in near-infrared region, exhibiting extraordinarily figure-ofmerit, defined by sensitivity (resonance shift/refractive index change) over full width at half maximum, from magnetic resonance shift depending on index changes of surrounding medium. This silicon dielectric metamaterial comprises subwavelength nanohole arrays in a square lattice on an ultrathin amorphous silicon membrane. The ultrathin silicon nanohole membrane is fabricated on a glass wafer by using e-beam lithography, silicon reactive ion etching, and hydrogen fluoride wet etching. This all-dielectric metamaterial successfully demonstrates exceptional figure-of-merit of 29, which is 7.6 times higher than those values of conventional metamaterials. This novel metamaterial enables not only the label-free detection of chemical and biological molecules with different mass concentrations but also the in situ reaction monitoring of biochemical molecules.
Publisher
WILEY-V C H VERLAG GMBH
Issue Date
2017-02
Language
English
Article Type
Article
Citation

ADVANCED OPTICAL MATERIALS, v.5, no.3, pp.1600628

ISSN
2195-1071
DOI
10.1002/adom.201600628
URI
http://hdl.handle.net/10203/220879
Appears in Collection
BiS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 5 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0