A Low Switching-Loss W-Band Radiometer Utilizing a Single-Pole-Double-Throw Distributed Amplifier in 0.13-mu m SiGe BiCMOS

Cited 21 time in webofscience Cited 0 time in scopus
  • Hit : 377
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorBi, Xiaojunko
dc.contributor.authorArasu, M. Annamalai.ko
dc.contributor.authorZhu, Yaoko
dc.contributor.authorJe, Minkyuko
dc.date.accessioned2016-12-01T06:57:57Z-
dc.date.available2016-12-01T06:57:57Z-
dc.date.created2016-11-21-
dc.date.created2016-11-21-
dc.date.created2016-11-21-
dc.date.created2016-11-21-
dc.date.issued2016-01-
dc.identifier.citationIEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, v.64, no.1, pp.226 - 238-
dc.identifier.issn0018-9480-
dc.identifier.urihttp://hdl.handle.net/10203/214543-
dc.description.abstractThis paper presents a low switching-loss Dicke radiometer for W-band passive imaging systems. The equivalent switching loss introduced by the passive single-pole-double-throw (SPDT) switch in the conventional radiometer is significantly reduced by the proposed single-pole-double-throw distributed amplifier (SPDT-DA), which leads to radical improvement on the receiver's noise performance. The Dicke radiometer consisting of a SPDT-DA, a four-stage low noise amplifier (LNA) and a power detector is fully integrated in a 0.13-mu m SiGe BiCMOS chip. With the 0.93-dB equivalent switching loss at 91 GHz of the SPDT-DA, the total noise figure (NF) of 8.4 dB at 91 GHz is achieved by the SPDT-DA followed by the LNA. With a power consumption of 28.5 mW, the radiometer obtains an overall RF gain of 42 dB and a noise equivalent temperature difference (NETD) of 0.21 K with 30-ms integration time. The two-dimensional imaging experiment with object distance of 0.7 m is successfully carried out with the radiometer chip.-
dc.languageEnglish-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.titleA Low Switching-Loss W-Band Radiometer Utilizing a Single-Pole-Double-Throw Distributed Amplifier in 0.13-mu m SiGe BiCMOS-
dc.typeArticle-
dc.identifier.wosid000372486200023-
dc.identifier.scopusid2-s2.0-84959090371-
dc.type.rimsART-
dc.citation.volume64-
dc.citation.issue1-
dc.citation.beginningpage226-
dc.citation.endingpage238-
dc.citation.publicationnameIEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES-
dc.identifier.doi10.1109/TMTT.2015.2504499-
dc.contributor.localauthorJe, Minkyu-
dc.contributor.nonIdAuthorBi, Xiaojun-
dc.contributor.nonIdAuthorArasu, M. Annamalai.-
dc.contributor.nonIdAuthorZhu, Yao-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorBiCMOS-
dc.subject.keywordAuthorcascaded noise figure-
dc.subject.keywordAuthorsingle-pole-double-throw (SPDT) switch-
dc.subject.keywordAuthorsub-terahertz imaging-
dc.subject.keywordAuthortransmission line loss-
dc.subject.keywordPlusIMAGING RECEIVER-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordPlusSENSITIVITY-
dc.subject.keywordPlusSYSTEMS-
dc.subject.keywordPlusCMOS-
dc.subject.keywordPlusGAIN-
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 21 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0