On-demand bootstrapping mechanism for isolated cryptographic operations on commodity accelerators

Cited 2 time in webofscience Cited 0 time in scopus
  • Hit : 536
  • Download : 0
General-Purpose computing on a Graphics Processing Unit (GPGPU) involves leveraging commodity GPUs as massively parallel processing units. GPGPU is an emerging computing paradigm for high-performance and data-intensive computations such as cryptographic operations. Although GPGPU is an attractive solution for accelerating modem cryptographic operations, the security challenges that stem from utilizing commodity GPUs remain an unresolved problem. In this paper, we present an On-demand Bootstrapping Mechanism for Isolated cryptographic operations (OBMI). OBMI transforms commodity GPUs into a securely isolated processing core for various cryptographic operations while maintaining cost-effective computations. By leveraging System Management Mode (SMM), a privileged execution mode provided by x86 architectures, OBMI implements a program and a secret key into the GPU such that they are securely isolated during the acceleration of cryptographic operations, even in the presence of compromised kernels. Our approach does not require an additional hardware-abstraction layer such as a hypervisor or micro-kernel, and it does not entail modifying the GPU driver. An evaluation of the proposed OBMI demonstrated that even adversaries with kernel privileges cannot gain access to the secret key, and it also showed that the proposed mechanism incurs negligible performance degradation for both the CPU and GPU. (C) 2016 Elsevier Ltd. All rights reserved
Publisher
ELSEVIER ADVANCED TECHNOLOGY
Issue Date
2016-09
Language
English
Article Type
Article
Keywords

GPUS

Citation

COMPUTERS & SECURITY, v.62, pp.33 - 48

ISSN
0167-4048
DOI
10.1016/j.cose.2016.06.006
URI
http://hdl.handle.net/10203/214471
Appears in Collection
CS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 2 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0