2D Covalent Metals: A New Materials Domain of Electrochemical CO2 Conversion with Broken Scaling Relationship

Toward a sustainable carbon cycle, electrochemical conversion of CO2 into valuable fuels has drawn much attention. However, sluggish kinetics and a substantial overpotential, originating from the strong correlation between the adsorption energies of intermediates and products, are key obstacles of electrochemical CO2 conversion. Here we show that 2D covalent metals with a zero band gap can overcome the intrinsic limitation of conventional metals and metal alloys and thereby substantially decrease the overpotential for CO2 reduction because of their covalent characteristics. From first-principles-based high-throughput screening results on 61 2D covalent metals, we find that the strong correlation between the adsorption energies of COOH and CO can be entirely broken. This leads to the computational design of CO2-to-CO and CO2-to-CH4 conversion catalysts in addition to hydrogen evolution reaction catalysts. Toward efficient electrochemical catalysts for CO2 reduction, this work suggests a new materials domain having two contradictory properties in a single material: covalent nature and electrical conductance
Publisher
AMER CHEMICAL SOC
Issue Date
2016-10
Language
ENG
Keywords

ELECTROCATALYTIC ACTIVITY; CATALYTIC-ACTIVITY; AU NANOPARTICLES; REDUCTION; EFFICIENT; ELECTROREDUCTION; SELECTIVITY; ELECTRODES; PROSPECTS; OXIDE

Citation

JOURNAL OF PHYSICAL CHEMISTRY LETTERS, v.7, no.20, pp.4124 - 4129

ISSN
1948-7185
DOI
10.1021/acs.jpclett.6b01876
URI
http://hdl.handle.net/10203/214433
Appears in Collection
EEW-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
  • Hit : 65
  • Download : 0
  • Cited 0 times in thomson ci
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡClick to seewebofscience_button
⊙ Cited 1 items in WoSClick to see citing articles inrecords_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0