Synthesis of Ultrathin, Homogeneous Copolymer Dielectrics to Control the Threshold Voltage of Organic Thin-Film Transistors

Cited 36 time in webofscience Cited 0 time in scopus
  • Hit : 281
  • Download : 0
This work demonstrates that threshold voltage (V-T) of organic thin-film transistors (OTFTs) can be controlled systematically by introducing new copoly mer dielectrics with electropositive functionality. A series of homogeneous copolymer dielectrics are polymerized from two monomers, 1,3,5-trimethyl- 1,3,5-trivinyl cyclotrisiloxane (V3D3) and 1-vinylimidazole (VI), via initiated chemical vapor deposition. The chemical composition of the copolymer dielectrics is exquisitely controlled to tune the V-T of C-60 OTFTs. In particular, all the copolymer dielectrics demonstrated in this work exhibit extremely low leakage current densities (lower than 2.5 x 10(-8) A cm(-2) at +/- 3 MV cm(-1)) even with a thickness less than 23 nm. Furthermore, by introducing an ultrathin pV3D3 interfacial layer (about 3 nm) between the copolymer dielectrics and C-60 semiconductor, the high mobility of the C-60 OTFTs (about 1 cm 2 V-1 s(-1)) remains unperturbed, showing that V-T can be controlled independently by tuning the composition of the copolymer dielectrics. Coupled with the ultralow dielectric thickness, the independent V-T controllability allows the V-T to be aligned near 0 V with sub-3 V operating voltage, which enables a substantial decrease of device power consumption. The suggested method can be employed widely to enhance device performance and reduce power consumption in various organic integrated circuit applications
Publisher
WILEY-V C H VERLAG GMBH
Issue Date
2016-09
Language
English
Article Type
Article
Citation

ADVANCED FUNCTIONAL MATERIALS, v.26, no.36, pp.6574 - 6582

ISSN
1616-301X
DOI
10.1002/adfm.201602585
URI
http://hdl.handle.net/10203/213992
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 36 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0