Fronthaul Compression and Precoding Design for C-RANs Over Ergodic Fading Channels

Cited 37 time in webofscience Cited 0 time in scopus
  • Hit : 632
  • Download : 0
This paper investigates the joint design of fronthaul compression and precoding for the downlink of cloud radio access networks (C-RANs). In a C-RAN, a central unit (CU) controls a cluster of radio units (RUs) through low-latency fronthaul links. Most previous works on the design of fronthaul compression and precoding assume constant channels and instantaneous channel state information (CSI) at the CU. This paper, in contrast, concentrates on a more practical scenario with block-ergodic channels and considers either instantaneous or stochastic CSI at the CU. Moreover, the analysis encompasses two types of CU-RU functional splits at the physical layer, which we refer to as compression-after-precoding (CAP) and compression-before-precoding (CBP). With the CAP approach, which is the standard C-RAN solution, all baseband processing is done at the CU. With the CBP scheme, channel encoding and precoding are instead performed at the RUs: The CU does not perform precoding but rather forwards separately the information messages of a subset of mobile stations (MSs) along with the compressed precoding matrices to each RU. Optimization algorithms over fronthaul compression and precoding for both CAP and CBP are proposed, which are based on a stochastic successive upper bound minimization (SSUM) approach. Numerical results yield insights into the optimal RU-CU functional split for C-RANs. As a general conclusion, the relative advantages of the two functional splits depend on the interplay between the enhanced interference management abilities of CAP, particularly for dense networks, and the lower fronthaul requirements of CBP in terms of precoding information overhead, particularly for large coherence periods and with stochastic, rather than instantaneous, CSI.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2016-07
Language
English
Article Type
Article
Keywords

RADIO ACCESS NETWORKS; MIMO SYSTEMS; BACKHAUL; SIGNAL

Citation

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, v.65, no.7, pp.5022 - 5032

ISSN
0018-9545
DOI
10.1109/TVT.2015.2466619
URI
http://hdl.handle.net/10203/212651
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 37 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0