Cell-Type Dependent Effect of Surface-Patterned Microdot Arrays on Neuronal Growth

Cited 2 time in webofscience Cited 0 time in scopus
  • Hit : 288
  • Download : 82
Surface micropatterns have been widely used as chemical cues to control the microenvironment of cultured neurons, particularly for neurobiological assays and neurochip designs. However, the cell-type dependency on the interactions between neurons and underlying micropatterns has been rarely investigated despite the inherent differences in the morphology of neuronal types. In this study, we used surface-printed microdot arrays to investigate the effect of the same micropatterns on the growth of mouse spinal interneuron, mouse hippocampal neurons, and rat hippocampal neurons. While mouse hippocampal neurons showed no significantly different growth on control and patterned substrates, we found the microdot arrays had different effects on early neuronal growth depending on the cell type: spinal interneurons tended to grow faster in length, whereas hippocampal neurons tended to form more axon collateral branches in response to the microdot arrays. Although there was a similar trend in the neurite length and branch number of both neurons changed across the microdot arrays with the expanded range of size and spacing, the dominant responses of each neuron, neurite elongation of mouse spinal interneurons and branching augmentation of rat hippocampal neurons were still preserved. Therefore, our results demonstrate that the same design of micropatterns could cause different neuronal growth results, raising an intriguing issue of considering cell types in neural interface designs
Publisher
FRONTIERS MEDIA SA
Issue Date
2016-05
Language
English
Article Type
Article
Keywords

IN-VITRO; ADHESION; DIFFERENTIATION; OUTGROWTH; GEOMETRY; GUIDANCE; BEHAVIOR

Citation

FRONTIERS IN NEUROSCIENCE, v.10

ISSN
1662-453X
DOI
10.3389/fnins.2016.00217
URI
http://hdl.handle.net/10203/209733
Appears in Collection
BiS-Journal Papers(저널논문)
Files in This Item
95610.pdf(5.87 MB)Download
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 2 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0