Multistatic cloud radar systems: joint sensing and communication design

Cited 8 time in webofscience Cited 0 time in scopus
  • Hit : 492
  • Download : 0
In a multistatic cloud radar system, receive sensors measure signals sent by a transmit element and reflected from a target and possibly clutter, in the presence of interference and noise. The receive sensors communicate over non-ideal backhaul links with a fusion center, or cloud processor, where the presence or absence of the target is determined. The backhaul architecture can be characterized either by an orthogonal-access channel or by a non-orthogonal multiple-access channel. Two backhaul transmission strategies are considered, namely, compress-and-forward (CF), which is well suited for the orthogonal-access backhaul, and amplify-and-forward (AF), which leverages the superposition property of the non-orthogonal multiple-access channel. In this paper, the joint optimization of the sensing and backhaul communication functions of the cloud radar system is studied. Specifically, the transmitted waveform is jointly optimized with backhaul quantization in the case of CF backhaul transmission and with the amplifying gains of the sensors for the AF backhaul strategy. In both cases, the information-theoretic criterion of the Bhattacharyya distance is adopted as a metric for the detection performance. Algorithmic solutions based on successive convex approximation are developed under different assumptions on the available channel state information. Numerical results demonstrate that the proposed schemes outperform conventional solutions that perform separate optimizations of the waveform and backhaul operation, as well as the standard distributed detection approach. Copyright (c) 2016 John Wiley & Sons, Ltd
Publisher
WILEY-BLACKWELL
Issue Date
2016-02
Language
English
Article Type
Article
Citation

TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, v.27, no.5, pp.716 - 730

ISSN
2161-3915
DOI
10.1002/ett.3020
URI
http://hdl.handle.net/10203/209497
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 8 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0