Realization of high performance flexible wire supercapacitors based on 3-dimensional NiCo2O4/Ni fibers

Cited 46 time in webofscience Cited 0 time in scopus
  • Hit : 228
  • Download : 0
The rapidly developing electronics industry is producing miniaturized electronic devices with flexible, portable and wearable characteristics, requiring high-performance miniature energy storage devices with flexible and light weight properties. Herein, we have successfully fabricated highly porous, binder free three-dimensional flower-like NiCo2O4/Ni nanostructures on Ni-wire as a fiber electrode for high-performance flexible fiber supercapacitors. Such a unique structure exhibited remarkable electrochemical performance with high capacitance (29.7 F cm(-3) at 2.5 mA), excellent rate capability (97.5% retention at 20 mA), and super cycling stability (80% retention, even after 5000 cycles). The remarkable electrochemical performance is attributed to the large active area in the 3D porous architecture and direct contact between the active materials and 3D-Ni current collectors, which facilitate easy ionic/electronic transport. The symmetric fiber super-capacitor showed a gravimetric energy density of 2.18 W h kg(-1) (0.21 mW h cm(-3)) and a power density of 21.6 W kg(-1) (2.1 mW cm(-3)) with good flexibility and cycling performance, signifying potential applications in high-performance flexible energy storage devices. Further, performance in a self-powered system was demonstrated by charging these wire type NiCo2O4/Ni supercapacitors by serially wound DSSCs to drive commercial LEDs. These results suggest that the fabricated device has excellent potential as a power source for flexible, portable and wearable applications as well as self-powered systems
Publisher
ROYAL SOC CHEMISTRY
Issue Date
2016-04
Language
English
Article Type
Article
Citation

JOURNAL OF MATERIALS CHEMISTRY A, v.4, no.13, pp.4718 - 4727

ISSN
2050-7488
DOI
10.1039/c5ta10781d
URI
http://hdl.handle.net/10203/209217
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 46 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0